BTSC-TNAS: A neural architecture search-based transformer for brain tumor segmentation and classification

分割 计算机科学 人工智能 人工神经网络 模式识别(心理学) 概化理论 变压器 深度学习 数学 量子力学 统计 物理 电压
作者
Xiao Liu,Chong Yao,Hongyi Chen,Rui Xiang,Hao Wu,Peng Du,Zekuan Yu,Weifan Liu,Jie Liu,Daoying Geng
出处
期刊:Computerized Medical Imaging and Graphics [Elsevier BV]
卷期号:110: 102307-102307 被引量:7
标识
DOI:10.1016/j.compmedimag.2023.102307
摘要

Glioblastoma (GBM), isolated brain metastasis (SBM), and primary central nervous system lymphoma (PCNSL) possess a high level of similarity in histomorphology and clinical manifestations on multimodal MRI. Such similarities have led to challenges in the clinical diagnosis of these three malignant tumors. However, many existing models solely focus on either the task of segmentation or classification, which limits the application of computer-aided diagnosis in clinical diagnosis and treatment. To solve this problem, we propose a multi-task learning transformer with neural architecture search (NAS) for brain tumor segmentation and classification (BTSC-TNAS). In the segmentation stage, we use a nested transformer U-shape network (NTU-NAS) with NAS to directly predict brain tumor masks from multi-modal MRI images. In the tumor classification stage, we use the multiscale features obtained from the encoder of NTU-NAS as the input features of the classification network (MSC-NET), which are integrated and corrected by the classification feature correction enhancement (CFCE) block to improve the accuracy of classification. The proposed BTSC-TNAS achieves an average Dice coefficient of 80.86% and 87.12% for the segmentation of tumor region and the maximum abnormal region in clinical data respectively. The model achieves a classification accuracy of 0.941. The experiments performed on the BraTS 2019 dataset show that the proposed BTSC-TNAS has excellent generalizability and can provide support for some challenging tasks in the diagnosis and treatment of brain tumors.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
糯糯发布了新的文献求助10
1秒前
屁屁小彭发布了新的文献求助10
2秒前
2秒前
wzzznh完成签到 ,获得积分10
3秒前
lee完成签到,获得积分10
5秒前
6秒前
着急的语海完成签到,获得积分10
7秒前
qzy完成签到,获得积分10
7秒前
小雨二月完成签到 ,获得积分20
7秒前
冷静的胜完成签到,获得积分10
9秒前
cgshao发布了新的文献求助30
10秒前
tracer526完成签到,获得积分10
13秒前
量子星尘发布了新的文献求助10
13秒前
屁屁小彭完成签到,获得积分10
14秒前
伶俐的雁蓉完成签到,获得积分10
14秒前
power完成签到,获得积分10
18秒前
贪玩的访风完成签到 ,获得积分10
20秒前
追寻冰淇淋应助尊敬寒松采纳,获得50
21秒前
tracer526发布了新的文献求助10
21秒前
23秒前
cgshao完成签到,获得积分10
24秒前
25秒前
26秒前
SWAGGER123发布了新的文献求助10
28秒前
hikh发布了新的文献求助10
30秒前
ljjxd完成签到,获得积分10
30秒前
orixero应助璐璇采纳,获得10
31秒前
鳗鱼香旋关注了科研通微信公众号
31秒前
FashionBoy应助旭日采纳,获得10
33秒前
独特的苗条完成签到,获得积分10
33秒前
ssx完成签到,获得积分10
35秒前
阿燕发布了新的文献求助10
35秒前
巴斯光年发布了新的文献求助10
37秒前
38秒前
SYLH应助yyyyy采纳,获得20
39秒前
Yr完成签到,获得积分10
40秒前
脑洞疼应助Han采纳,获得10
43秒前
44秒前
44秒前
doudou发布了新的文献求助10
44秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3959455
求助须知:如何正确求助?哪些是违规求助? 3505634
关于积分的说明 11125092
捐赠科研通 3237449
什么是DOI,文献DOI怎么找? 1789148
邀请新用户注册赠送积分活动 871583
科研通“疑难数据库(出版商)”最低求助积分说明 802858