Deep convolutional neural networks with Bee Collecting Pollen Algorithm (BCPA)-based landslide data balancing and spatial prediction

山崩 计算机科学 支持向量机 地形湿度指数 人工智能 决策树 机器学习 人工神经网络 随机森林 卷积神经网络 数据挖掘 算法 地质学 岩土工程
作者
J. Aruna Jasmine,C. Heltin Genitha
出处
期刊:Journal of Intelligent and Fuzzy Systems [IOS Press]
卷期号:46 (1): 597-617 被引量:2
标识
DOI:10.3233/jifs-234924
摘要

Predicting the landslide-prone area is critical for various applications, including emergency response, land planning, and disaster mitigation. There needs to be a thorough landslide inventory in current studies and appropriate sampling uncertainty issues. Landslide risk mapping has expanded significantly as machine learning techniques have developed. However, one of the primary issues in Landslide Prediction is data imbalance (DI). This is problematic since it is challenging or expensive to generate an accurate inventory map of landslides based on previous data. This study proposes a novel landslide prediction method using Generative Adversarial Networks (GAN) for generating the synthetic data, Synthetic Minority Oversampling Technique (SMOTE) for overcoming the data imbalance problem, and Bee Collecting Pollen Algorithm (BCPA) for feature extraction. Combining 184 landslides and ten criteria, including topographic wetness index (TWI), aspect, distance from the road, total curvature, sediment transport index (STI), height, slope, stream, lithology, and slope length, a geographical database was produced. The data was generated using GAN, a Deep Convolutional Neural Network (DCNN) technique to populate the dataset. The proposed DCNN-BCPA approach findings were merged with current machine learning methods such as Random Forests (RF), Artificial Neural Networks (ANN), k-Nearest Neighbours (k-NN), Decision Trees (DT), Support Vector Machine (SVM), logistic regression (LR). The model’s accuracy, precision, recall, f-score, and RMSE were measured using the following metrics: 92.675%, 96.298%, 90.536%, 96.637%, and 45.623%. This study suggests that harmonizing landslide data may have a substantial impact on the predictive capabilities of machine learning models.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
3秒前
MJ完成签到,获得积分10
3秒前
3秒前
徐慕源完成签到,获得积分10
3秒前
zcious完成签到 ,获得积分10
4秒前
钦川发布了新的文献求助10
5秒前
斯文汲完成签到,获得积分10
5秒前
小木发布了新的文献求助10
6秒前
ypl完成签到,获得积分10
6秒前
6秒前
乐乐应助新德里梅塔洛1号采纳,获得10
6秒前
银河亮晶晶完成签到,获得积分10
6秒前
忐忑的松鼠完成签到,获得积分20
6秒前
完美世界应助lfg采纳,获得10
7秒前
优雅的雨应助哆啦采纳,获得10
7秒前
7秒前
安详的翰发布了新的文献求助30
7秒前
7秒前
Singularity完成签到,获得积分0
7秒前
火锅虾滑完成签到,获得积分20
7秒前
8秒前
斯文汲发布了新的文献求助10
9秒前
www完成签到,获得积分10
9秒前
嘎嘎嘎嘎发布了新的文献求助10
10秒前
11秒前
蜉蝣发布了新的文献求助10
11秒前
11秒前
36456657应助火锅虾滑采纳,获得10
11秒前
11秒前
何博士完成签到 ,获得积分10
11秒前
11秒前
lishenstan发布了新的文献求助10
12秒前
12秒前
干净初彤发布了新的文献求助10
12秒前
天天快乐应助甘乐采纳,获得10
13秒前
Owen应助甘乐采纳,获得10
13秒前
风再起时完成签到,获得积分10
13秒前
LYL发布了新的文献求助10
14秒前
14秒前
高分求助中
Continuum thermodynamics and material modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 2000
Applications of Emerging Nanomaterials and Nanotechnology 1111
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Theory of Block Polymer Self-Assembly 750
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3488637
求助须知:如何正确求助?哪些是违规求助? 3076232
关于积分的说明 9144270
捐赠科研通 2768577
什么是DOI,文献DOI怎么找? 1519188
邀请新用户注册赠送积分活动 703703
科研通“疑难数据库(出版商)”最低求助积分说明 701952