Performance and stability improvement of CVD monolayer MoS2 transistors through HfO2 dielectrics engineering

钝化 材料科学 光电子学 电介质 单层 原子层沉积 栅极电介质 电子迁移率 晶体管 阈值电压 二硫化钼 图层(电子) 纳米技术 电压 电气工程 复合材料 工程类
作者
Chunhui Huang,Zeyi Yan,Chengwei Hu,Xiong Xiong,Yanqing Wu
出处
期刊:Applied Physics Letters [American Institute of Physics]
卷期号:123 (7) 被引量:5
标识
DOI:10.1063/5.0157416
摘要

Monolayer molybdenum disulfide (MoS2) is a promising semiconductor channel material for future electronics due to its atomic thickness and high mobility. However, conventional back-gate MoS2 transistors suffer from substantial scattering caused by substrate and surface adsorbates, which impair carrier mobility and device reliability. In this work, we demonstrate an exemplary dielectric engineering approach that uses atomic-layer-deposited hafnium oxide (HfO2) as the gate dielectric and channel passivation layer to improve device performance and positive bias instability. The large-single-crystal monolayer MoS2 film was directly synthesized on SiO2/Si substrates by a low-pressure chemical vapor deposition method. MoS2 transistors with various dielectrics were fabricated and characterized for a fair comparison. The mobility increased from 4.2 to 19.9 cm2/V·s by suppressing charged impurities and phonon scattering when transferring the MoS2 channel from 100 nm SiO2 substrates to 20 nm HfO2 substrates. Passivation of another 10 nm HfO2 on the back-gate transistors further increased the mobility to 36.4 cm2/V·s with a high drive current of 107 μA/μm. Moreover, the threshold voltage shift of the passivated transistor was reduced by about 58% from 1.9 to 0.8 V under positive bias stress. This is due to the fact that channel passivation with HfO2 effectively eliminated charge trapping of adsorbed substances. These results reveal that HfO2 gate dielectric and passivation by atomic-layer deposition are effective methods to improve the performance and stability of MoS2 devices.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
hellojwx完成签到,获得积分10
刚刚
NexusExplorer应助isabelwy采纳,获得10
1秒前
烂漫纲完成签到,获得积分10
1秒前
嘎嘎完成签到,获得积分10
1秒前
L1995完成签到,获得积分10
1秒前
1秒前
1秒前
11完成签到,获得积分10
1秒前
爆米花应助梦想里采纳,获得10
1秒前
2秒前
2秒前
CeciliaLee发布了新的文献求助10
2秒前
3秒前
闪闪的正豪完成签到,获得积分10
3秒前
myheat完成签到,获得积分10
4秒前
勤奋安波完成签到,获得积分10
4秒前
安安发布了新的文献求助10
4秒前
Amazing_p完成签到,获得积分10
4秒前
4秒前
4秒前
张千万完成签到,获得积分10
5秒前
11发布了新的文献求助40
5秒前
西西完成签到,获得积分10
6秒前
QWE发布了新的文献求助10
6秒前
Jian发布了新的文献求助10
6秒前
笨维发布了新的文献求助10
6秒前
6秒前
好多鱼爱学习完成签到 ,获得积分10
6秒前
屈昭阳发布了新的文献求助10
7秒前
baobaoxiong完成签到,获得积分10
7秒前
7秒前
7秒前
蒋若风发布了新的文献求助10
7秒前
8秒前
songyk完成签到,获得积分10
8秒前
zhoumin完成签到,获得积分10
9秒前
9秒前
高高问夏完成签到,获得积分10
10秒前
10秒前
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Basic And Clinical Science Course 2025-2026 3000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
人脑智能与人工智能 1000
花の香りの秘密―遺伝子情報から機能性まで 800
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
Pharmacology for Chemists: Drug Discovery in Context 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5608504
求助须知:如何正确求助?哪些是违规求助? 4693127
关于积分的说明 14876947
捐赠科研通 4717761
什么是DOI,文献DOI怎么找? 2544250
邀请新用户注册赠送积分活动 1509316
关于科研通互助平台的介绍 1472836