A Comprehensive Survey on Automatic Knowledge Graph Construction

计算机科学 知识图 知识获取 知识抽取 开放式知识库连接 数据科学 图形 领域知识 知识管理 知识工程 知识整合 基于知识的系统 个人知识管理 人工智能 理论计算机科学 组织学习
作者
Lingfeng Zhong,Jia Wu,Qian Li,Hao Peng,Xindong Wu
出处
期刊:ACM Computing Surveys [Association for Computing Machinery]
卷期号:56 (4): 1-62 被引量:31
标识
DOI:10.1145/3618295
摘要

Automatic knowledge graph construction aims at manufacturing structured human knowledge. To this end, much effort has historically been spent extracting informative fact patterns from different data sources. However, more recently, research interest has shifted to acquiring conceptualized structured knowledge beyond informative data. In addition, researchers have also been exploring new ways of handling sophisticated construction tasks in diversified scenarios. Thus, there is a demand for a systematic review of paradigms to organize knowledge structures beyond data-level mentions. To meet this demand, we comprehensively survey more than 300 methods to summarize the latest developments in knowledge graph construction. A knowledge graph is built in three steps: knowledge acquisition, knowledge refinement, and knowledge evolution. The processes of knowledge acquisition are reviewed in detail, including obtaining entities with fine-grained types and their conceptual linkages to knowledge graphs; resolving coreferences; and extracting entity relationships in complex scenarios. The survey covers models for knowledge refinement, including knowledge graph completion, and knowledge fusion. Methods to handle knowledge evolution are also systematically presented, including condition knowledge acquisition, condition knowledge graph completion, and knowledge dynamic. We present the paradigms to compare the distinction among these methods along the axis of the data environment, motivation, and architecture. Additionally, we also provide briefs on accessible resources that can help readers to develop practical knowledge graph systems. The survey concludes with discussions on the challenges and possible directions for future exploration.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
woobinhua发布了新的文献求助10
刚刚
高兴白开水完成签到,获得积分10
3秒前
yy完成签到,获得积分20
3秒前
科目三应助乐观蚂蚁采纳,获得10
4秒前
326503177完成签到,获得积分10
4秒前
米花完成签到 ,获得积分10
4秒前
gdh发布了新的文献求助10
4秒前
wenbo完成签到,获得积分10
5秒前
雪落你看不见完成签到,获得积分10
5秒前
wqy完成签到 ,获得积分10
6秒前
科目三应助buzhinianjiu采纳,获得10
6秒前
卖萌的秋田完成签到,获得积分10
7秒前
dream完成签到 ,获得积分10
7秒前
杰哥关注了科研通微信公众号
8秒前
寒冷丹雪完成签到,获得积分10
8秒前
10秒前
搜集达人应助woobinhua采纳,获得10
11秒前
科研通AI2S应助1953采纳,获得10
11秒前
冬猫完成签到,获得积分10
12秒前
12秒前
有魅力勒完成签到,获得积分10
13秒前
团团团完成签到 ,获得积分10
15秒前
美丽柠檬完成签到,获得积分10
16秒前
贪玩路灯完成签到,获得积分10
16秒前
e394282438完成签到,获得积分10
16秒前
蔡从安完成签到,获得积分20
17秒前
SciGPT应助快乐的小木虫采纳,获得10
17秒前
tetrakis完成签到,获得积分10
17秒前
斯文败类应助寒冷丹雪采纳,获得10
17秒前
霹雳Young完成签到 ,获得积分10
20秒前
Hyccccc完成签到,获得积分10
21秒前
21秒前
Chenly完成签到,获得积分10
21秒前
科研通AI2S应助蔡从安采纳,获得10
21秒前
lixiangrui110完成签到,获得积分10
21秒前
minmin完成签到,获得积分10
21秒前
嘟嘟完成签到,获得积分10
22秒前
11完成签到,获得积分10
22秒前
悠悠完成签到 ,获得积分10
23秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
An Introduction to Geographical and Urban Economics: A Spiky World Book by Charles van Marrewijk, Harry Garretsen, and Steven Brakman 500
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3150658
求助须知:如何正确求助?哪些是违规求助? 2802207
关于积分的说明 7846456
捐赠科研通 2459547
什么是DOI,文献DOI怎么找? 1309286
科研通“疑难数据库(出版商)”最低求助积分说明 628821
版权声明 601757