摘要
The Journal of PhysiologyVolume 601, Issue 19 p. 4267-4269 Journal Club Sleep tight, beat right: Does nucleus of the solitary tract circadian rhythmicity influence blood pressure and sleep regulation? This article relates to: Circadian regulation of glutamate release pathways shapes synaptic throughput in the brainstem nucleus of the solitary tract (NTS) Forrest J. Ragozzino, Bree Anne Peterson, Ilia N. Karatsoreos, James H. Peters, Volume 601Issue 10The Journal of Physiology pages: 1881-1896 First Published online: April 13, 2023 Meagan N. Smith, Corresponding Author Meagan N. Smith [email protected] orcid.org/0009-0006-2912-6282 Department of Physiology and Pharmacology, University of Calgary, Calgary, Canada Email: [email protected]Search for more papers by this authorDavid Girgis, David Girgis orcid.org/0000-0001-7279-8590 Department of Physiology and Pharmacology, University of Calgary, Calgary, CanadaSearch for more papers by this author Meagan N. Smith, Corresponding Author Meagan N. Smith [email protected] orcid.org/0009-0006-2912-6282 Department of Physiology and Pharmacology, University of Calgary, Calgary, Canada Email: [email protected]Search for more papers by this authorDavid Girgis, David Girgis orcid.org/0000-0001-7279-8590 Department of Physiology and Pharmacology, University of Calgary, Calgary, CanadaSearch for more papers by this author First published: 04 September 2023 https://doi.org/10.1113/JP285276 Handling Editors: David Wyllie & Nathan Schoppa The peer review history is available in the Supporting Information section of this article (https://doi.org/10.1113/JP285276#support-information-section). Read the full textAboutPDF ToolsRequest permissionExport citationAdd to favoritesTrack citation ShareShare Give accessShare full text accessShare full-text accessPlease review our Terms and Conditions of Use and check box below to share full-text version of article.I have read and accept the Wiley Online Library Terms and Conditions of UseShareable LinkUse the link below to share a full-text version of this article with your friends and colleagues. Learn more.Copy URL Share a linkShare onEmailFacebookTwitterLinkedInRedditWechat No abstract is available for this article. Supporting Information Filename Description tjp15719-sup-0001-PeerReview.pdf159.5 KB Peer Review History Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article. References Chrobok, L., Northeast, R. C., Myung, J., Cunningham, P. S., Petit, C., & Piggins, H. D. (2020). Timekeeping in the hindbrain: A multi-oscillatory circadian centre in the mouse dorsal vagal complex. Communications Biology, 3(1), 225. 10.1038/s42003-020-0960-y PubMedWeb of Science®Google Scholar Phillips, A. A., Krassioukov, A. V., Ainslie, P. N., Cote, A. T., & Warburton, D. E. R. (2014). Increased central arterial stiffness explains baroreflex dysfunction in spinal cord injury. Journal of Neurotrauma, 31(12), 1122–1128. 10.1089/neu.2013.3280 PubMedWeb of Science®Google Scholar Ragozzino, F. J., Peterson, B. A., Karatsoreos, I. N., & Peters, J. H. (2023). Circadian regulation of glutamate release pathways shapes synaptic throughput in the brainstem nucleus of the solitary tract (NTS). The Journal of Physiology, 601(10), 1881–1896. 10.1113/JP284370 CASPubMedWeb of Science®Google Scholar Sankari, A., Vaughan, S., Bascom, A., Martin, J. L., & Badr, M. S. (2019). Sleep-disordered breathing and spinal cord injury: A state-of-the-art review. Chest, 155(2), 438–445. 10.1016/j.chest.2018.10.002 PubMedWeb of Science®Google Scholar Squair, J. W., Gautier, M., Mahe, L., Soriano, J. E., Rowald, A., Bichat, A., Cho, N., Anderson, M. A., James, N. D., Gandar, J., Incognito, A. I., Schiavone, G., Sarafis, Z. K., Laskaratos, A., Bartholdi, K., Demesmaker, R., Komi, S., Moerman, C., Vaseghi, B., … Phillips, A. A. (2021). Neuroprosthetic baroreflex controls haemodynamics after spinal cord injury. Nature, 590(7845), 308–314. 10.1038/s41586-020-03180-w CASPubMedWeb of Science®Google Scholar Strack, A. M., Sawyer, W. B., Marubio, L. M., & Lowey, A. D. (1988). Spinal origin of sympathetic preganglionic neurons in the rat. Brain Research, 455(1), 187–191. 10.1016/0006-8993(88)90132-1 CASPubMedWeb of Science®Google Scholar Taylor, C. E., Atkinson, G., Willie, C. K., Jones, H., Ainslie, P. N., & Tzeng, Y.-C. (2011). Diurnal variation in the mechanical and neural components of the baroreflex. Hypertension, 58(1), 51–56. 10.1161/HYPERTENSIONAHA.111.171512 CASPubMedWeb of Science®Google Scholar Yao, Y., Barger, Z., Doost, M. S., Tso, C. F., Darmohray, D., Silverman, D., Liu, D., Ma, C., Cetin, A., Yao, S., Zeng, H., & Dan, Y. (2022). Cardiovascular baroreflex circuit moonlights in sleep control. Neuron, 110(23), 3986–3999.e6. 10.1016/j.neuron.2022.08.027 CASPubMedGoogle Scholar Volume601, Issue191 October 2023Pages 4267-4269 ReferencesRelatedInformation