小梁网
吡非尼酮
纤维连接蛋白
细胞外基质
纤维化
转化生长因子
化学
细胞骨架
青光眼
细胞
医学
分子生物学
特发性肺纤维化
病理
眼科
内科学
生物
生物化学
肺
作者
Xiaofeng Zhu,Bei Zeng,Caiqing Wu,Zidong Chen,Minbin Yu,Yangfan Yang
标识
DOI:10.1167/tvst.12.11.21
摘要
Purpose: Trabecular meshwork (TM) fibrosis is a crucial pathophysiological process in the development of primary open-angle glaucoma. Pirfenidone (PFD) is a new, broad-spectrum antifibrotic agent approved for the treatment of idiopathic pulmonary fibrosis. This study investigated the inhibitory effect of PFD on TM fibrosis and evaluated its efficacy in lowering intraocular pressure (IOP). Methods: Human TM cells were isolated, cultured, and characterized. Cell Counting Kit-8 was used to evaluate the proliferation and toxicity of different concentrations of PFD on normal or fibrotic TM cells. TM cells were treated with transforming growth factor beta-2 (TGF-β2) in the absence or presence of PFD. Western blotting and immunofluorescence analyses were used to analyze changes in the TM cell cytoskeleton and extracellular matrix (ECM) proteins, including alpha-smooth muscle actin (α-SMA), F-actin, collagen IV (COL IV), and fibronectin (FN). An ocular hypertension (OHT) mouse model was induced with Ad-TGF-β2C226/228S and then treated with PFD or latanoprost (LT) eye drops to confirm the efficacy of PFD in lowering IOP. Results: PFD inhibited the proliferation of fibrotic TM cells in a dose-dependent manner and inhibited TGF-β2–induced overexpression of α-SMA, COL IV, and FN in TM cells. PFD stabilized F-actin. In vivo, PFD eye drops reduced the IOP of the OHT models and showed no significant difference compared with LT eye drops. Conclusions: PFD inhibited TGF-β2–induced TM cell fibrosis by rearranging the disordered cytoskeleton and decreasing ECM deposition, thereby enhancing the aqueous outflow from the TM outflow pathway and lowering IOP, which provides a potential new approach to treating glaucoma. Translational Relevance: Our work with pirfenidone provides a new approach to treat glaucoma.
科研通智能强力驱动
Strongly Powered by AbleSci AI