Steering Feedback Torque Prediction Based on Sequence-to-Sequence Network With Switcher-Assisted Training Algorithm

加权 计算机科学 扭矩 任务(项目管理) 序列(生物学) 灵活性(工程) 人工智能 工程类 算法 控制理论(社会学) 控制(管理) 放射科 系统工程 数学 统计 医学 热力学 生物 遗传学 物理
作者
Yicai Liu,Guowang Zhang,Jian Li,Changyao Huang,Xiangyu Wang,Liang Li,Xun Zhao
出处
期刊:IEEE Transactions on Industrial Informatics [Institute of Electrical and Electronics Engineers]
卷期号:20 (3): 4894-4905 被引量:5
标识
DOI:10.1109/tii.2023.3329650
摘要

The steer-by-wire (SbW) system has gained recognition as the future of intelligent vehicles due to its attributes, such as safety, simplification, and flexibility. However, the elimination of mechanical linkage necessitates the provision of artificial steering feedback torque (SFT), which is crucial for the potential driver to manipulate the vehicle. To enhance the steering feel, this article extends the SFT design range and proposes an SFT prediction scheme based on the sequence-to-sequence (S2S) network with the switcher-assisted (SA) training algorithm. The models of the electric power steering (EPS) and SbW are first established to analyze the input features. The S2S network with gated recurrent units (GRU) is then presented, where the encoder scheme incorporates the squeeze-and-excitation (SE) operation to achieve adaptive feature recalibration. Subsequently, the SA algorithm is proposed to alleviate the exposure bias based on the principle of multitask learning (MTL), wherein online training is regarded as the main task and offline training is treated as the auxiliary task. The weighting coefficients between tasks are optimized using an assisted network named switcher, facilitating a gradual transition from MTL to the single main task, thereby avoiding complex tuning processes. The validation results indicate the proposed scheme outperforms existing methods regarding estimation and prediction. The ablation experiments are further conducted to illustrate the effectiveness of SE blocks and the SA algorithm. Finally, the SFT construction simulation, involving target prediction and torque tracking, is conducted, validating that variable-length prediction can adapt to various conditions and improve tracking performance.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
RJ应助toxin37采纳,获得10
1秒前
1秒前
1秒前
长孙明雪完成签到,获得积分10
2秒前
优秀的邪欢完成签到 ,获得积分10
2秒前
2秒前
万圣夜完成签到,获得积分10
2秒前
3秒前
我是老大应助LHZM采纳,获得10
4秒前
4秒前
安安完成签到,获得积分10
5秒前
丝绒发布了新的文献求助10
5秒前
6秒前
CipherSage应助A健采纳,获得10
6秒前
7秒前
乐乐应助12采纳,获得10
7秒前
Hiogteng发布了新的文献求助20
8秒前
tzhzh8发布了新的文献求助20
8秒前
xiaotianli发布了新的文献求助10
8秒前
闪闪乞完成签到,获得积分10
9秒前
诺克萨斯完成签到,获得积分10
9秒前
11秒前
电池小白完成签到,获得积分10
11秒前
wenllian完成签到,获得积分10
11秒前
11秒前
BowieHuang应助乘风文月采纳,获得20
12秒前
12秒前
xucc完成签到,获得积分10
12秒前
12秒前
量子星尘发布了新的文献求助10
13秒前
飘逸锦程完成签到 ,获得积分0
13秒前
14秒前
无花果应助SigRosa采纳,获得10
14秒前
lxy完成签到,获得积分10
14秒前
dandelion完成签到,获得积分10
14秒前
脑洞疼应助阿酒采纳,获得10
14秒前
无花果应助勤奋成风采纳,获得10
15秒前
酷波er应助丝绒采纳,获得10
15秒前
朱信姿完成签到,获得积分10
15秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5718168
求助须知:如何正确求助?哪些是违规求助? 5250844
关于积分的说明 15284812
捐赠科研通 4868418
什么是DOI,文献DOI怎么找? 2614132
邀请新用户注册赠送积分活动 1564020
关于科研通互助平台的介绍 1521476