Neurophysiological effects of frequency, length, phonological neighborhood density, and iconicity on sign recognition

象似性 400奈米 手语 符号(数学) 语言学 美国手语 词汇判断任务 计算机科学 心理学 语音识别 事件相关电位 认知 数学 数学分析 哲学 神经科学
作者
Xiaohong Zhang,Hong-Wen Cao,Hong Li
出处
期刊:Neuroreport [Lippincott Williams & Wilkins]
卷期号:34 (17): 817-824
标识
DOI:10.1097/wnr.0000000000001959
摘要

Current theories on lexical recognition are mostly based on studies from spoken languages or their written forms. Much less is known about the process of lexical recognition in sign languages. This study aims to examine the neural correlates of sign recognition by investigating the effects of lexical frequency, length, phonological neighborhood density, and iconicity during Chinese Sign Language comprehension. Twenty-two deaf signers viewed a set of sign videos that varied in the 4 lexical properties and decided if they referred to animals, while event-related potential responses were recorded. Data were analyzed through linear mixed-effects models with the lexical variables treated as continuous measures. The results showed that frequency modulated ERP amplitude as early as around 200 ms and in the late N400 time frame. Sign length invoked effects throughout the process, starting from 200 ms and pertaining to the last epoch. Neighborhood density effects were also observed early around 200 ms and later on the N400 and late positive complex (LPC). Iconicity produced robust effects on the N400 and LPC amplitude. Lexical frequency, length, and neighborhood density influence the neural dynamics of sign recognition in a similar way as to spoken words. Iconicity can confer a processing advantage due to closer form-meaning mappings. The results indicate that lexical recognition engages some mechanisms that are universal across the signed and spoken modality, but it can also be regulated by modality-specific properties such as the prevalent iconicity in sign languages.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
香豆素发布了新的文献求助10
1秒前
麦苳发布了新的文献求助10
2秒前
2秒前
李健的小迷弟应助123fhq采纳,获得10
3秒前
科研小白完成签到,获得积分10
4秒前
盖盖完成签到,获得积分20
5秒前
8秒前
8秒前
GG发布了新的文献求助10
9秒前
程程程完成签到,获得积分10
10秒前
英姑应助鲤鱼思远采纳,获得10
12秒前
13秒前
一只想做科研的狗完成签到,获得积分10
14秒前
15秒前
15秒前
Re2411发布了新的文献求助10
16秒前
AAAA完成签到,获得积分10
18秒前
18秒前
19秒前
19秒前
19秒前
黄志敏发布了新的文献求助10
20秒前
濡益完成签到 ,获得积分10
20秒前
qin123完成签到,获得积分10
21秒前
22秒前
CipherSage应助粽子采纳,获得10
22秒前
布洛芬发布了新的文献求助10
23秒前
23秒前
程程程发布了新的文献求助10
23秒前
小崔读研发布了新的文献求助10
23秒前
23秒前
万能图书馆应助90采纳,获得10
24秒前
25秒前
25秒前
Liu发布了新的文献求助10
25秒前
26秒前
26秒前
你好CDY发布了新的文献求助10
26秒前
27秒前
27秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Continuum Thermodynamics and Material Modelling 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
ISCN 2024 – An International System for Human Cytogenomic Nomenclature (2024) 1000
CRC Handbook of Chemistry and Physics 104th edition 1000
Izeltabart tapatansine - AdisInsight 600
An International System for Human Cytogenomic Nomenclature (2024) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3769313
求助须知:如何正确求助?哪些是违规求助? 3314504
关于积分的说明 10171882
捐赠科研通 3029644
什么是DOI,文献DOI怎么找? 1662409
邀请新用户注册赠送积分活动 794913
科研通“疑难数据库(出版商)”最低求助积分说明 756440