Neurophysiological effects of frequency, length, phonological neighborhood density, and iconicity on sign recognition

象似性 400奈米 手语 符号(数学) 语言学 美国手语 词汇判断任务 计算机科学 心理学 语音识别 事件相关电位 认知 数学 数学分析 哲学 神经科学
作者
Xiaohong Zhang,Hong-Wen Cao,Hong Li
出处
期刊:Neuroreport [Ovid Technologies (Wolters Kluwer)]
卷期号:34 (17): 817-824
标识
DOI:10.1097/wnr.0000000000001959
摘要

Current theories on lexical recognition are mostly based on studies from spoken languages or their written forms. Much less is known about the process of lexical recognition in sign languages. This study aims to examine the neural correlates of sign recognition by investigating the effects of lexical frequency, length, phonological neighborhood density, and iconicity during Chinese Sign Language comprehension. Twenty-two deaf signers viewed a set of sign videos that varied in the 4 lexical properties and decided if they referred to animals, while event-related potential responses were recorded. Data were analyzed through linear mixed-effects models with the lexical variables treated as continuous measures. The results showed that frequency modulated ERP amplitude as early as around 200 ms and in the late N400 time frame. Sign length invoked effects throughout the process, starting from 200 ms and pertaining to the last epoch. Neighborhood density effects were also observed early around 200 ms and later on the N400 and late positive complex (LPC). Iconicity produced robust effects on the N400 and LPC amplitude. Lexical frequency, length, and neighborhood density influence the neural dynamics of sign recognition in a similar way as to spoken words. Iconicity can confer a processing advantage due to closer form-meaning mappings. The results indicate that lexical recognition engages some mechanisms that are universal across the signed and spoken modality, but it can also be regulated by modality-specific properties such as the prevalent iconicity in sign languages.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
yifan21发布了新的文献求助10
1秒前
Lalabi8bola发布了新的文献求助10
1秒前
不配.应助啦啦啦采纳,获得10
3秒前
4秒前
轩辕德地发布了新的文献求助10
4秒前
4秒前
家若发布了新的文献求助10
5秒前
5秒前
知世郎发布了新的文献求助10
5秒前
所所应助认真的难敌采纳,获得10
6秒前
Li完成签到,获得积分10
6秒前
abu完成签到,获得积分10
8秒前
9秒前
9秒前
彭于晏应助科研通管家采纳,获得10
9秒前
CCC完成签到,获得积分10
9秒前
科研通AI2S应助科研通管家采纳,获得10
9秒前
NexusExplorer应助科研通管家采纳,获得10
9秒前
MP应助科研通管家采纳,获得30
9秒前
完美世界应助科研通管家采纳,获得10
9秒前
科研通AI2S应助科研通管家采纳,获得10
9秒前
李爱国应助科研通管家采纳,获得20
10秒前
科研通AI2S应助科研通管家采纳,获得10
10秒前
大个应助科研通管家采纳,获得10
10秒前
脑洞疼应助科研通管家采纳,获得10
10秒前
科研通AI2S应助科研通管家采纳,获得10
10秒前
10秒前
10秒前
叫我学霸男神裴完成签到,获得积分10
11秒前
路茉完成签到,获得积分10
12秒前
13秒前
小豆芽完成签到,获得积分10
15秒前
GXJGXJ发布了新的文献求助10
17秒前
hoo完成签到,获得积分10
18秒前
swqx完成签到,获得积分10
18秒前
19秒前
xuxuxu完成签到,获得积分10
20秒前
Hello应助慈祥的新烟采纳,获得10
20秒前
21秒前
高分求助中
Earth System Geophysics 1000
Studies on the inheritance of some characters in rice Oryza sativa L 600
Medicina di laboratorio. Logica e patologia clinica 600
Mathematics and Finite Element Discretizations of Incompressible Navier—Stokes Flows 500
Language injustice and social equity in EMI policies in China 500
mTOR signalling in RPGR-associated Retinitis Pigmentosa 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3206929
求助须知:如何正确求助?哪些是违规求助? 2856304
关于积分的说明 8103836
捐赠科研通 2521393
什么是DOI,文献DOI怎么找? 1354579
科研通“疑难数据库(出版商)”最低求助积分说明 642050
邀请新用户注册赠送积分活动 613277