Identification of multivariable microRNA and clinical biomarker panels to predict imatinib response in chronic myeloid leukemia at diagnosis

伊马替尼 医学 甲磺酸伊马替尼 髓系白血病 肿瘤科 内科学 接收机工作特性 比例危险模型 酪氨酸激酶抑制剂 生物标志物 小RNA 危险系数 生物信息学 癌症 生物 生物化学 基因 置信区间
作者
Andrew Wu,Ryan Yen,Sarah Grasedieck,Hanyang Lin,Helen Nakamoto,Donna L. Forrest,Connie J. Eaves,Xiaoyan Jiang
出处
期刊:Leukemia [Springer Nature]
卷期号:37 (12): 2426-2435 被引量:10
标识
DOI:10.1038/s41375-023-02062-0
摘要

Imatinib Mesylate (imatinib) was once hailed as the magic bullet for chronic myeloid leukemia (CML) and remains a front-line therapy for CML to this day alongside other tyrosine kinase inhibitors (TKIs). However, TKI treatments are rarely curative and patients are often required to receive life-long treatment or otherwise risk relapse. Thus, there is a growing interest in identifying biomarkers in patients which can predict TKI response upon diagnosis. In this study, we analyze clinical data and differentially expressed miRNAs in CD34+ CML cells from 80 patients at diagnosis who were later classified as imatinib-responders or imatinib-nonresponders. A Cox Proportional Hazard (CoxPH) analysis identified 16 miRNAs that were associated with imatinib nonresponse and differentially expressed in these patients. We also trained a machine learning model with different combinations of the 16 miRNAs with and without clinical parameters and identified a panel with high predictive performance based on area-under-curve values of receiver-operating-characteristic and precision-recall curves. Interestingly, the multivariable panel consisting of both miRNAs and clinical features performed better than either miRNA or clinical panels alone. Thus, our findings may inform future studies on predictive biomarkers and serve as a tool to develop more optimized treatment plans for CML patients in the clinic.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
张瑜发布了新的文献求助10
刚刚
复杂访冬完成签到,获得积分10
1秒前
Orange应助壹贰叁肆采纳,获得10
1秒前
令狐完成签到,获得积分10
2秒前
薛教授完成签到,获得积分10
2秒前
3秒前
无限的半青完成签到 ,获得积分10
3秒前
丘比特应助小羊烧鸡采纳,获得10
4秒前
无名应助科研通管家采纳,获得10
4秒前
宋呵呵应助科研通管家采纳,获得10
4秒前
Return应助科研通管家采纳,获得10
5秒前
量子星尘发布了新的文献求助10
5秒前
HOAN应助科研通管家采纳,获得10
5秒前
量子星尘发布了新的文献求助10
5秒前
浮游应助科研通管家采纳,获得10
5秒前
桐桐应助科研通管家采纳,获得10
5秒前
浮游应助科研通管家采纳,获得10
5秒前
Owen应助科研通管家采纳,获得10
6秒前
Hello应助科研通管家采纳,获得30
6秒前
婵婵完成签到,获得积分10
6秒前
6秒前
6秒前
老福贵儿应助科研通管家采纳,获得10
6秒前
深情安青应助科研通管家采纳,获得30
6秒前
自由白凡完成签到,获得积分10
6秒前
Lucas应助科研通管家采纳,获得10
6秒前
完美世界应助科研通管家采纳,获得10
7秒前
SciGPT应助科研通管家采纳,获得10
7秒前
7秒前
打打应助科研通管家采纳,获得10
7秒前
田様应助ninomae采纳,获得10
7秒前
7秒前
雍雍完成签到 ,获得积分10
7秒前
乐乐应助科研通管家采纳,获得10
7秒前
浮游应助科研通管家采纳,获得10
8秒前
上官若男应助科研通管家采纳,获得10
8秒前
8秒前
8秒前
8秒前
8秒前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5694691
求助须知:如何正确求助?哪些是违规求助? 5098273
关于积分的说明 15214299
捐赠科研通 4851210
什么是DOI,文献DOI怎么找? 2602193
邀请新用户注册赠送积分活动 1554073
关于科研通互助平台的介绍 1511978