亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Identification of multivariable microRNA and clinical biomarker panels to predict imatinib response in chronic myeloid leukemia at diagnosis

伊马替尼 医学 甲磺酸伊马替尼 髓系白血病 肿瘤科 内科学 接收机工作特性 比例危险模型 酪氨酸激酶抑制剂 生物标志物 小RNA 危险系数 生物信息学 癌症 生物 生物化学 基因 置信区间
作者
Andrew Wu,Ryan Yen,Sarah Grasedieck,Hanyang Lin,Helen Nakamoto,Donna L. Forrest,Connie J. Eaves,Xiaoyan Jiang
出处
期刊:Leukemia [Springer Nature]
卷期号:37 (12): 2426-2435 被引量:8
标识
DOI:10.1038/s41375-023-02062-0
摘要

Imatinib Mesylate (imatinib) was once hailed as the magic bullet for chronic myeloid leukemia (CML) and remains a front-line therapy for CML to this day alongside other tyrosine kinase inhibitors (TKIs). However, TKI treatments are rarely curative and patients are often required to receive life-long treatment or otherwise risk relapse. Thus, there is a growing interest in identifying biomarkers in patients which can predict TKI response upon diagnosis. In this study, we analyze clinical data and differentially expressed miRNAs in CD34+ CML cells from 80 patients at diagnosis who were later classified as imatinib-responders or imatinib-nonresponders. A Cox Proportional Hazard (CoxPH) analysis identified 16 miRNAs that were associated with imatinib nonresponse and differentially expressed in these patients. We also trained a machine learning model with different combinations of the 16 miRNAs with and without clinical parameters and identified a panel with high predictive performance based on area-under-curve values of receiver-operating-characteristic and precision-recall curves. Interestingly, the multivariable panel consisting of both miRNAs and clinical features performed better than either miRNA or clinical panels alone. Thus, our findings may inform future studies on predictive biomarkers and serve as a tool to develop more optimized treatment plans for CML patients in the clinic.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Fairy完成签到,获得积分10
15秒前
YifanWang应助科研通管家采纳,获得10
27秒前
YifanWang应助科研通管家采纳,获得20
27秒前
YifanWang应助科研通管家采纳,获得20
27秒前
YifanWang应助科研通管家采纳,获得20
27秒前
37秒前
孟凡波发布了新的文献求助10
42秒前
43秒前
量子星尘发布了新的文献求助10
47秒前
枯蚀发布了新的文献求助10
51秒前
56秒前
crane完成签到,获得积分10
1分钟前
ZSN发布了新的文献求助10
1分钟前
Yini完成签到,获得积分0
1分钟前
2分钟前
GPTea举报ZZZ求助涉嫌违规
2分钟前
顺心十八完成签到,获得积分10
2分钟前
kklkimo完成签到,获得积分10
2分钟前
顺心十八发布了新的文献求助10
2分钟前
ph完成签到 ,获得积分10
2分钟前
3分钟前
Prometheusss发布了新的文献求助10
3分钟前
ding应助碗碗采纳,获得10
3分钟前
3分钟前
3分钟前
碗碗发布了新的文献求助10
3分钟前
所所应助幸福胡萝卜采纳,获得10
3分钟前
科研通AI2S应助机灵灰狼采纳,获得10
3分钟前
4分钟前
科研通AI5应助科研通管家采纳,获得10
4分钟前
幸福胡萝卜完成签到,获得积分10
4分钟前
JamesPei应助碗碗采纳,获得10
5分钟前
5分钟前
5分钟前
5分钟前
5分钟前
碗碗发布了新的文献求助10
5分钟前
从容芮应助嘉心糖采纳,获得200
5分钟前
5分钟前
lele完成签到,获得积分10
5分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
SOFT MATTER SERIES Volume 22 Soft Matter in Foods 1000
Zur lokalen Geoidbestimmung aus terrestrischen Messungen vertikaler Schweregradienten 1000
可见光通信专用集成电路及实时系统 500
Storie e culture della televisione 500
Selected research on camelid physiology and nutrition 500
《2023南京市住宿行业发展报告》 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4880231
求助须知:如何正确求助?哪些是违规求助? 4166952
关于积分的说明 12927398
捐赠科研通 3925807
什么是DOI,文献DOI怎么找? 2154922
邀请新用户注册赠送积分活动 1173009
关于科研通互助平台的介绍 1077253