Identification of multivariable microRNA and clinical biomarker panels to predict imatinib response in chronic myeloid leukemia at diagnosis

伊马替尼 医学 甲磺酸伊马替尼 髓系白血病 肿瘤科 内科学 接收机工作特性 比例危险模型 酪氨酸激酶抑制剂 生物标志物 小RNA 危险系数 生物信息学 癌症 生物 基因 置信区间 生物化学
作者
Andrew Wu,Ryan Yen,Sarah Grasedieck,Hanyang Lin,Helen Nakamoto,Donna L. Forrest,Connie J. Eaves,Xiaoyan Jiang
出处
期刊:Leukemia [Springer Nature]
卷期号:37 (12): 2426-2435 被引量:7
标识
DOI:10.1038/s41375-023-02062-0
摘要

Imatinib Mesylate (imatinib) was once hailed as the magic bullet for chronic myeloid leukemia (CML) and remains a front-line therapy for CML to this day alongside other tyrosine kinase inhibitors (TKIs). However, TKI treatments are rarely curative and patients are often required to receive life-long treatment or otherwise risk relapse. Thus, there is a growing interest in identifying biomarkers in patients which can predict TKI response upon diagnosis. In this study, we analyze clinical data and differentially expressed miRNAs in CD34+ CML cells from 80 patients at diagnosis who were later classified as imatinib-responders or imatinib-nonresponders. A Cox Proportional Hazard (CoxPH) analysis identified 16 miRNAs that were associated with imatinib nonresponse and differentially expressed in these patients. We also trained a machine learning model with different combinations of the 16 miRNAs with and without clinical parameters and identified a panel with high predictive performance based on area-under-curve values of receiver-operating-characteristic and precision-recall curves. Interestingly, the multivariable panel consisting of both miRNAs and clinical features performed better than either miRNA or clinical panels alone. Thus, our findings may inform future studies on predictive biomarkers and serve as a tool to develop more optimized treatment plans for CML patients in the clinic.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
语黛完成签到,获得积分10
刚刚
完美世界应助enen采纳,获得10
刚刚
1秒前
Jean发布了新的文献求助10
1秒前
小羊发布了新的文献求助30
1秒前
1秒前
木质素爱好者完成签到,获得积分10
2秒前
Notdodead应助甜甜的高跟鞋采纳,获得20
2秒前
3秒前
Giroro_roro发布了新的文献求助10
4秒前
4秒前
WQQ完成签到,获得积分10
4秒前
可爱海雪发布了新的文献求助30
4秒前
AL完成签到,获得积分10
5秒前
5秒前
负责水风完成签到,获得积分10
5秒前
jl完成签到 ,获得积分10
5秒前
6秒前
8秒前
tree发布了新的文献求助30
8秒前
李爱国应助Zayne采纳,获得10
8秒前
d1111s完成签到,获得积分10
9秒前
感动水杯完成签到 ,获得积分10
9秒前
9秒前
9秒前
9秒前
小二郎应助负责水风采纳,获得10
9秒前
9秒前
过时的机器猫完成签到,获得积分10
9秒前
10秒前
Xk发布了新的文献求助10
11秒前
秦琳昕完成签到,获得积分10
11秒前
传奇3应助心灵美又蓝采纳,获得10
12秒前
小马甲应助科研通管家采纳,获得10
12秒前
12秒前
量子星尘发布了新的文献求助10
12秒前
大个应助balabala采纳,获得10
12秒前
坦率的匪应助科研通管家采纳,获得10
13秒前
汉堡包应助科研通管家采纳,获得10
13秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Handbook of Marine Craft Hydrodynamics and Motion Control, 2nd Edition 500
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3987054
求助须知:如何正确求助?哪些是违规求助? 3529416
关于积分的说明 11244990
捐赠科研通 3267882
什么是DOI,文献DOI怎么找? 1803968
邀请新用户注册赠送积分活动 881257
科研通“疑难数据库(出版商)”最低求助积分说明 808650