Identification of multivariable microRNA and clinical biomarker panels to predict imatinib response in chronic myeloid leukemia at diagnosis

伊马替尼 医学 甲磺酸伊马替尼 髓系白血病 肿瘤科 内科学 接收机工作特性 比例危险模型 酪氨酸激酶抑制剂 生物标志物 小RNA 危险系数 生物信息学 癌症 生物 生物化学 基因 置信区间
作者
Andrew Wu,Ryan Yen,Sarah Grasedieck,Hanyang Lin,Helen Nakamoto,Donna L. Forrest,Connie J. Eaves,Xiaoyan Jiang
出处
期刊:Leukemia [Springer Nature]
卷期号:37 (12): 2426-2435 被引量:8
标识
DOI:10.1038/s41375-023-02062-0
摘要

Imatinib Mesylate (imatinib) was once hailed as the magic bullet for chronic myeloid leukemia (CML) and remains a front-line therapy for CML to this day alongside other tyrosine kinase inhibitors (TKIs). However, TKI treatments are rarely curative and patients are often required to receive life-long treatment or otherwise risk relapse. Thus, there is a growing interest in identifying biomarkers in patients which can predict TKI response upon diagnosis. In this study, we analyze clinical data and differentially expressed miRNAs in CD34+ CML cells from 80 patients at diagnosis who were later classified as imatinib-responders or imatinib-nonresponders. A Cox Proportional Hazard (CoxPH) analysis identified 16 miRNAs that were associated with imatinib nonresponse and differentially expressed in these patients. We also trained a machine learning model with different combinations of the 16 miRNAs with and without clinical parameters and identified a panel with high predictive performance based on area-under-curve values of receiver-operating-characteristic and precision-recall curves. Interestingly, the multivariable panel consisting of both miRNAs and clinical features performed better than either miRNA or clinical panels alone. Thus, our findings may inform future studies on predictive biomarkers and serve as a tool to develop more optimized treatment plans for CML patients in the clinic.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
刚刚
1秒前
1秒前
Ava应助杨潇丶丶采纳,获得10
1秒前
1秒前
1秒前
抹茶发布了新的文献求助10
2秒前
fantasy完成签到,获得积分20
2秒前
ZYY完成签到,获得积分20
2秒前
2秒前
HWL完成签到,获得积分10
3秒前
桃子e发布了新的文献求助10
3秒前
wangli发布了新的文献求助10
3秒前
3秒前
3秒前
llj完成签到,获得积分10
3秒前
木木 12完成签到,获得积分10
3秒前
小半仙发布了新的文献求助10
4秒前
4秒前
4秒前
懒得理完成签到 ,获得积分10
4秒前
体贴半仙完成签到,获得积分20
4秒前
yu完成签到,获得积分10
5秒前
科研通AI6应助中微子采纳,获得10
5秒前
赘婿应助Quentin9998采纳,获得10
5秒前
酷波er应助dongjingbutaire采纳,获得10
5秒前
猪猪猪发布了新的文献求助10
5秒前
研友_8y2G0L发布了新的文献求助30
5秒前
牟若溪发布了新的文献求助10
5秒前
内向玉兰完成签到,获得积分10
6秒前
夜星子发布了新的文献求助10
6秒前
务实的手套完成签到,获得积分10
7秒前
所所应助唠叨的以柳采纳,获得10
7秒前
SciGPT应助海绵宝宝采纳,获得10
8秒前
宋世伟发布了新的文献求助10
8秒前
水123发布了新的文献求助10
8秒前
lili发布了新的文献求助10
9秒前
CipherSage应助欢喜幻桃采纳,获得10
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Exploring Nostalgia 500
Natural Product Extraction: Principles and Applications 500
Exosomes Pipeline Insight, 2025 500
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 500
Advanced Memory Technology: Functional Materials and Devices 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5667927
求助须知:如何正确求助?哪些是违规求助? 4888141
关于积分的说明 15122164
捐赠科研通 4826686
什么是DOI,文献DOI怎么找? 2584281
邀请新用户注册赠送积分活动 1538179
关于科研通互助平台的介绍 1496440