Combined deep-learning MRI-based radiomic models for preoperative risk classification of endometrial endometrioid adenocarcinoma

医学 列线图 无线电技术 磁共振成像 子宫内膜癌 放射科 肿瘤科 内科学 癌症
作者
Jin Yang,Yuying Cao,Fangzhu Zhou,Chengyao Li,Jiabei Lv,Pu Li
出处
期刊:Frontiers in Oncology [Frontiers Media]
卷期号:13 被引量:5
标识
DOI:10.3389/fonc.2023.1231497
摘要

Background Differences exist between high- and low-risk endometrial cancer (EC) in terms of whether lymph node dissection is performed. Factors such as tumor grade, myometrial invasion (MDI), and lymphovascular space invasion (LVSI) in the European Society for Medical Oncology (ESMO), European SocieTy for Radiotherapy & Oncology (ESTRO) and European Society of Gynaecological Oncology (ESGO) guidelines risk classification can often only be accurately assessed postoperatively. The aim of our study was to estimate the risk classification of patients with endometrial endometrioid adenocarcinoma before surgery and offer individualized treatment plans based on their risk classification. Methods Clinical information and last preoperative pelvic magnetic resonance imaging (MRI) of patients with postoperative pathologically determined endometrial endometrioid adenocarcinoma were collected retrospectively. The region of interest (ROI) was subsequently plotted in T1-weighted imaging (T1WI), T2-weighted imaging (T2WI), and diffusion-weighted imaging (DWI) MRI scans, and the traditional radiomics features and deep-learning image features were extracted. A final radiomics nomogram model integrating traditional radiomics features, deep learning image features, and clinical information was constructed to distinguish between low- and high-risk patients (based on the 2020 ESMO-ESGO-ESTRO guidelines). The efficacy of the model was evaluated in the training and validation sets of the model. Results We finally included 168 patients from January 1, 2020 to July 29, 2021, of which 95 patients in 2021 were classified as the training set and 73 patients in 2020 were classified as the validation set. In the training set, the area under the curve (AUC) of the radiomics nomogram was 0.923 (95%CI: 0.865–0.980) and in the validation set, the AUC of the radiomics nomogram was 0.842 (95%CI: 0.762–0.923). The nomogram had better predictions than both the traditional radiomics model and the deep-learning radiomics model. Conclusion MRI-based radiomics models can be useful for preoperative risk classification of patients with endometrial endometrioid adenocarcinoma.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
认真火车发布了新的文献求助10
1秒前
1秒前
2秒前
J_C_Van发布了新的文献求助10
2秒前
lvzhou发布了新的文献求助30
2秒前
3秒前
星辰大海应助徐hb采纳,获得10
3秒前
沉舟发布了新的文献求助10
3秒前
4秒前
如果发布了新的文献求助10
4秒前
4秒前
4秒前
jinyu发布了新的文献求助10
5秒前
刘玉梅完成签到,获得积分10
5秒前
屈先生完成签到,获得积分10
5秒前
5秒前
林子发布了新的文献求助10
5秒前
6秒前
大模型应助luckyhan采纳,获得10
6秒前
汪汪发布了新的文献求助10
6秒前
七七完成签到,获得积分10
6秒前
7秒前
7秒前
7秒前
奋斗成风发布了新的文献求助10
8秒前
十一完成签到,获得积分10
8秒前
Dreamy完成签到,获得积分10
8秒前
sidashu完成签到,获得积分10
8秒前
科研通AI2S应助蓉儿采纳,获得10
8秒前
9秒前
9秒前
9秒前
坦率灵槐发布了新的文献求助10
9秒前
慌慌完成签到 ,获得积分10
9秒前
wangchong完成签到,获得积分10
9秒前
9秒前
Danke发布了新的文献求助10
10秒前
jocelynhuihui完成签到,获得积分10
10秒前
10秒前
11秒前
高分求助中
合成生物食品制造技术导则,团体标准,编号:T/CITS 396-2025 1000
The Leucovorin Guide for Parents: Understanding Autism’s Folate 1000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Fermented Coffee Market 500
Comparing natural with chemical additive production 500
Atlas of Liver Pathology: A Pattern-Based Approach 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5237952
求助须知:如何正确求助?哪些是违规求助? 4405573
关于积分的说明 13711175
捐赠科研通 4273871
什么是DOI,文献DOI怎么找? 2345256
邀请新用户注册赠送积分活动 1342382
关于科研通互助平台的介绍 1300263