Combined deep-learning MRI-based radiomic models for preoperative risk classification of endometrial endometrioid adenocarcinoma

医学 列线图 无线电技术 磁共振成像 子宫内膜癌 放射科 肿瘤科 内科学 癌症
作者
Jin Yang,Yuying Cao,Fangzhu Zhou,Chengyao Li,Jiabei Lv,Pu Li
出处
期刊:Frontiers in Oncology [Frontiers Media]
卷期号:13 被引量:5
标识
DOI:10.3389/fonc.2023.1231497
摘要

Background Differences exist between high- and low-risk endometrial cancer (EC) in terms of whether lymph node dissection is performed. Factors such as tumor grade, myometrial invasion (MDI), and lymphovascular space invasion (LVSI) in the European Society for Medical Oncology (ESMO), European SocieTy for Radiotherapy & Oncology (ESTRO) and European Society of Gynaecological Oncology (ESGO) guidelines risk classification can often only be accurately assessed postoperatively. The aim of our study was to estimate the risk classification of patients with endometrial endometrioid adenocarcinoma before surgery and offer individualized treatment plans based on their risk classification. Methods Clinical information and last preoperative pelvic magnetic resonance imaging (MRI) of patients with postoperative pathologically determined endometrial endometrioid adenocarcinoma were collected retrospectively. The region of interest (ROI) was subsequently plotted in T1-weighted imaging (T1WI), T2-weighted imaging (T2WI), and diffusion-weighted imaging (DWI) MRI scans, and the traditional radiomics features and deep-learning image features were extracted. A final radiomics nomogram model integrating traditional radiomics features, deep learning image features, and clinical information was constructed to distinguish between low- and high-risk patients (based on the 2020 ESMO-ESGO-ESTRO guidelines). The efficacy of the model was evaluated in the training and validation sets of the model. Results We finally included 168 patients from January 1, 2020 to July 29, 2021, of which 95 patients in 2021 were classified as the training set and 73 patients in 2020 were classified as the validation set. In the training set, the area under the curve (AUC) of the radiomics nomogram was 0.923 (95%CI: 0.865–0.980) and in the validation set, the AUC of the radiomics nomogram was 0.842 (95%CI: 0.762–0.923). The nomogram had better predictions than both the traditional radiomics model and the deep-learning radiomics model. Conclusion MRI-based radiomics models can be useful for preoperative risk classification of patients with endometrial endometrioid adenocarcinoma.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
坚强铸海完成签到,获得积分10
2秒前
牛牛眉目发布了新的文献求助10
2秒前
2秒前
3秒前
干姜发布了新的文献求助10
4秒前
Pp发布了新的文献求助10
5秒前
666应助科研鸟采纳,获得10
5秒前
蓝天白云发布了新的文献求助10
5秒前
瓦解99发布了新的文献求助10
8秒前
yx_cheng应助zzz采纳,获得30
8秒前
Coraline应助jt采纳,获得10
9秒前
10秒前
15秒前
csy发布了新的文献求助10
17秒前
瓦解99完成签到,获得积分10
18秒前
18秒前
19秒前
张渔歌完成签到,获得积分10
19秒前
19秒前
20秒前
22秒前
asdf应助明天见采纳,获得10
22秒前
愉快天亦完成签到,获得积分10
23秒前
25秒前
25秒前
26秒前
Jasper应助科研通管家采纳,获得10
26秒前
Lucas应助科研通管家采纳,获得10
26秒前
ED应助科研通管家采纳,获得10
26秒前
彭于彦祖应助科研通管家采纳,获得30
26秒前
26秒前
26秒前
26秒前
26秒前
26秒前
好运来应助科研通管家采纳,获得10
26秒前
26秒前
26秒前
CodeCraft应助科研通管家采纳,获得10
26秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3966366
求助须知:如何正确求助?哪些是违规求助? 3511778
关于积分的说明 11159852
捐赠科研通 3246372
什么是DOI,文献DOI怎么找? 1793416
邀请新用户注册赠送积分活动 874427
科研通“疑难数据库(出版商)”最低求助积分说明 804388