Combined deep-learning MRI-based radiomic models for preoperative risk classification of endometrial endometrioid adenocarcinoma

医学 列线图 无线电技术 磁共振成像 子宫内膜癌 放射科 肿瘤科 内科学 癌症
作者
Jin Yang,Yuying Cao,Fangzhu Zhou,Chengyao Li,Jiabei Lv,Pu Li
出处
期刊:Frontiers in Oncology [Frontiers Media SA]
卷期号:13 被引量:5
标识
DOI:10.3389/fonc.2023.1231497
摘要

Background Differences exist between high- and low-risk endometrial cancer (EC) in terms of whether lymph node dissection is performed. Factors such as tumor grade, myometrial invasion (MDI), and lymphovascular space invasion (LVSI) in the European Society for Medical Oncology (ESMO), European SocieTy for Radiotherapy & Oncology (ESTRO) and European Society of Gynaecological Oncology (ESGO) guidelines risk classification can often only be accurately assessed postoperatively. The aim of our study was to estimate the risk classification of patients with endometrial endometrioid adenocarcinoma before surgery and offer individualized treatment plans based on their risk classification. Methods Clinical information and last preoperative pelvic magnetic resonance imaging (MRI) of patients with postoperative pathologically determined endometrial endometrioid adenocarcinoma were collected retrospectively. The region of interest (ROI) was subsequently plotted in T1-weighted imaging (T1WI), T2-weighted imaging (T2WI), and diffusion-weighted imaging (DWI) MRI scans, and the traditional radiomics features and deep-learning image features were extracted. A final radiomics nomogram model integrating traditional radiomics features, deep learning image features, and clinical information was constructed to distinguish between low- and high-risk patients (based on the 2020 ESMO-ESGO-ESTRO guidelines). The efficacy of the model was evaluated in the training and validation sets of the model. Results We finally included 168 patients from January 1, 2020 to July 29, 2021, of which 95 patients in 2021 were classified as the training set and 73 patients in 2020 were classified as the validation set. In the training set, the area under the curve (AUC) of the radiomics nomogram was 0.923 (95%CI: 0.865–0.980) and in the validation set, the AUC of the radiomics nomogram was 0.842 (95%CI: 0.762–0.923). The nomogram had better predictions than both the traditional radiomics model and the deep-learning radiomics model. Conclusion MRI-based radiomics models can be useful for preoperative risk classification of patients with endometrial endometrioid adenocarcinoma.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
量子星尘发布了新的文献求助10
刚刚
万能图书馆应助botion采纳,获得10
刚刚
舒心健柏完成签到,获得积分10
1秒前
1秒前
李可乐发布了新的文献求助10
1秒前
科研辣椒完成签到,获得积分10
1秒前
鳗鱼衣完成签到 ,获得积分10
1秒前
luyunxing完成签到,获得积分10
1秒前
1秒前
zxt完成签到,获得积分10
1秒前
科研通AI6应助孤独的猎手采纳,获得10
2秒前
Yummy完成签到,获得积分10
3秒前
Annnnnn完成签到,获得积分10
3秒前
echo完成签到,获得积分10
3秒前
yibaozhangfa完成签到,获得积分10
5秒前
11发布了新的文献求助30
5秒前
肝不动的牛马完成签到,获得积分10
5秒前
ding应助ruqinmq采纳,获得10
5秒前
桐桐应助Kleen采纳,获得10
5秒前
maoyi发布了新的文献求助10
5秒前
小luc发布了新的文献求助10
6秒前
李瑶函完成签到,获得积分10
6秒前
AN完成签到,获得积分10
6秒前
baomingqiu完成签到 ,获得积分10
6秒前
15940203654完成签到 ,获得积分10
6秒前
斯文败类应助举个栗子8采纳,获得10
6秒前
adou完成签到,获得积分20
7秒前
bjyx完成签到 ,获得积分10
7秒前
ks完成签到,获得积分10
7秒前
追寻翩跹完成签到,获得积分10
7秒前
tigger发布了新的文献求助10
7秒前
du完成签到 ,获得积分10
8秒前
Attendre完成签到 ,获得积分10
8秒前
dida完成签到,获得积分10
9秒前
ler完成签到,获得积分20
9秒前
无语的沛春完成签到,获得积分10
9秒前
周周完成签到 ,获得积分10
9秒前
小蚂蚁完成签到,获得积分10
9秒前
9秒前
甄昕完成签到,获得积分10
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
Metagames: Games about Games 700
King Tyrant 680
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5573758
求助须知:如何正确求助?哪些是违规求助? 4660031
关于积分的说明 14727408
捐赠科研通 4599888
什么是DOI,文献DOI怎么找? 2524520
邀请新用户注册赠送积分活动 1494877
关于科研通互助平台的介绍 1464977