已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Cross-Parametric Generative Adversarial Network-Based Magnetic Resonance Image Feature Synthesis for Breast Lesion Classification

计算机科学 人工智能 判别式 特征(语言学) 磁共振成像 模式识别(心理学) 乳房磁振造影 参数统计 基本事实 特征提取 计算机视觉 乳腺癌 乳腺摄影术 癌症 放射科 医学 数学 哲学 内科学 统计 语言学
作者
Ming Fan,Guangyao Huang,Junhong Lou,Xin Gao,Tieyong Zeng,Lihua Li
出处
期刊:IEEE Journal of Biomedical and Health Informatics [Institute of Electrical and Electronics Engineers]
卷期号:27 (11): 5495-5505 被引量:5
标识
DOI:10.1109/jbhi.2023.3311021
摘要

Dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) contains information on tumor morphology and physiology for breast cancer diagnosis and treatment. However, this technology requires contrast agent injection with more acquisition time than other parametric images, such as T2-weighted imaging (T2WI). Current image synthesis methods attempt to map the image data from one domain to another, whereas it is challenging or even infeasible to map the images with one sequence into images with multiple sequences. Here, we propose a new approach of cross-parametric generative adversarial network (GAN)-based feature synthesis (CPGANFS) to generate discriminative DCE-MRI features from T2WI with applications in breast cancer diagnosis. The proposed approach decodes the T2W images into latent cross-parameter features to reconstruct the DCE-MRI and T2WI features by balancing the information shared between the two. A Wasserstein GAN with a gradient penalty is employed to differentiate the T2WI-generated features from ground-truth features extracted from DCE-MRI. The synthesized DCE-MRI feature-based model achieved significantly (p = 0.036) higher prediction performance (AUC = 0.866) in breast cancer diagnosis than that based on T2WI (AUC = 0.815). Visualization of the model shows that our CPGANFS method enhances the predictive power by levitating attention to the lesion and the surrounding parenchyma areas, which is driven by the interparametric information learned from T2WI and DCE-MRI. Our proposed CPGANFS provides a framework for cross-parametric MR image feature generation from a single-sequence image guided by an information-rich, time-series image with kinetic information. Extensive experimental results demonstrate its effectiveness with high interpretability and improved performance in breast cancer diagnosis.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
domingo发布了新的文献求助20
刚刚
Rondab应助西瓜二郎采纳,获得30
刚刚
2秒前
杰jj完成签到 ,获得积分10
2秒前
CC发布了新的文献求助10
4秒前
CipherSage应助龚书婷采纳,获得10
5秒前
WuYiHHH发布了新的文献求助10
6秒前
lqllll完成签到,获得积分10
9秒前
10秒前
敏er完成签到,获得积分10
10秒前
11秒前
完美世界应助xxxx采纳,获得10
12秒前
CC完成签到,获得积分10
12秒前
寒冷的绿真完成签到 ,获得积分10
13秒前
15秒前
19秒前
昏睡的南霜完成签到,获得积分10
23秒前
24秒前
ruler完成签到,获得积分10
25秒前
hhhi发布了新的文献求助10
26秒前
瓶盖发布了新的文献求助10
27秒前
30秒前
32秒前
33秒前
龚书婷发布了新的文献求助10
36秒前
儒雅香彤完成签到 ,获得积分10
36秒前
银杏完成签到,获得积分10
37秒前
詹卫卫完成签到 ,获得积分10
37秒前
贲立辉发布了新的文献求助10
38秒前
42秒前
Tianji发布了新的文献求助10
45秒前
47秒前
梅倪完成签到,获得积分10
50秒前
50秒前
烟花应助Tianji采纳,获得10
51秒前
爆米花应助发粪涂墙采纳,获得10
52秒前
儒雅致远发布了新的文献求助10
52秒前
53秒前
54秒前
DT发布了新的文献求助10
56秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
Aktuelle Entwicklungen in der linguistischen Forschung 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3989918
求助须知:如何正确求助?哪些是违规求助? 3532013
关于积分的说明 11255831
捐赠科研通 3270829
什么是DOI,文献DOI怎么找? 1805053
邀请新用户注册赠送积分活动 882233
科研通“疑难数据库(出版商)”最低求助积分说明 809216