Cross-Parametric Generative Adversarial Network-Based Magnetic Resonance Image Feature Synthesis for Breast Lesion Classification

计算机科学 人工智能 判别式 特征(语言学) 磁共振成像 模式识别(心理学) 乳房磁振造影 参数统计 基本事实 特征提取 计算机视觉 乳腺癌 乳腺摄影术 癌症 放射科 医学 数学 哲学 内科学 统计 语言学
作者
Ming Fan,Guangyao Huang,Junhong Lou,Xin Gao,Tieyong Zeng,Lihua Li
出处
期刊:IEEE Journal of Biomedical and Health Informatics [Institute of Electrical and Electronics Engineers]
卷期号:27 (11): 5495-5505 被引量:5
标识
DOI:10.1109/jbhi.2023.3311021
摘要

Dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) contains information on tumor morphology and physiology for breast cancer diagnosis and treatment. However, this technology requires contrast agent injection with more acquisition time than other parametric images, such as T2-weighted imaging (T2WI). Current image synthesis methods attempt to map the image data from one domain to another, whereas it is challenging or even infeasible to map the images with one sequence into images with multiple sequences. Here, we propose a new approach of cross-parametric generative adversarial network (GAN)-based feature synthesis (CPGANFS) to generate discriminative DCE-MRI features from T2WI with applications in breast cancer diagnosis. The proposed approach decodes the T2W images into latent cross-parameter features to reconstruct the DCE-MRI and T2WI features by balancing the information shared between the two. A Wasserstein GAN with a gradient penalty is employed to differentiate the T2WI-generated features from ground-truth features extracted from DCE-MRI. The synthesized DCE-MRI feature-based model achieved significantly (p = 0.036) higher prediction performance (AUC = 0.866) in breast cancer diagnosis than that based on T2WI (AUC = 0.815). Visualization of the model shows that our CPGANFS method enhances the predictive power by levitating attention to the lesion and the surrounding parenchyma areas, which is driven by the interparametric information learned from T2WI and DCE-MRI. Our proposed CPGANFS provides a framework for cross-parametric MR image feature generation from a single-sequence image guided by an information-rich, time-series image with kinetic information. Extensive experimental results demonstrate its effectiveness with high interpretability and improved performance in breast cancer diagnosis.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
陈强强发布了新的文献求助10
刚刚
ASH完成签到 ,获得积分10
刚刚
大喵发布了新的文献求助10
1秒前
Hale完成签到,获得积分0
1秒前
Steven发布了新的文献求助30
2秒前
科研通AI2S应助黑色土豆采纳,获得10
2秒前
猪猪hero应助黑色土豆采纳,获得10
2秒前
3秒前
充电宝应助三年H采纳,获得10
5秒前
9秒前
13秒前
绿泡泡发布了新的文献求助10
14秒前
夏佳泽完成签到 ,获得积分10
14秒前
zhxq完成签到,获得积分10
15秒前
15秒前
Rondab应助小丸子采纳,获得30
16秒前
17秒前
红枫没有微雨怜完成签到 ,获得积分10
18秒前
十八完成签到,获得积分10
18秒前
三年H发布了新的文献求助10
19秒前
19秒前
王杨发布了新的文献求助10
20秒前
归尘发布了新的文献求助10
22秒前
汪海洋发布了新的文献求助10
24秒前
陈槊诸完成签到 ,获得积分10
26秒前
QDU应助绿泡泡采纳,获得10
28秒前
MXene发布了新的文献求助10
29秒前
32秒前
liziqi发布了新的文献求助10
37秒前
38秒前
38秒前
mutongchen关注了科研通微信公众号
39秒前
Damon完成签到 ,获得积分10
40秒前
闪闪如南发布了新的文献求助10
43秒前
英俊的铭应助科研通管家采纳,获得10
43秒前
大个应助大喵采纳,获得10
43秒前
科目三应助科研通管家采纳,获得10
43秒前
酷波er应助科研通管家采纳,获得10
43秒前
科研通AI2S应助科研通管家采纳,获得10
43秒前
李爱国应助科研通管家采纳,获得10
43秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3989797
求助须知:如何正确求助?哪些是违规求助? 3531910
关于积分的说明 11255394
捐赠科研通 3270563
什么是DOI,文献DOI怎么找? 1805008
邀请新用户注册赠送积分活动 882157
科研通“疑难数据库(出版商)”最低求助积分说明 809190