重要提醒:2025.12.15 12:00-12:50期间发布的求助,下载出现了问题,现在已经修复完毕,请重新下载即可。如非文件错误,请不要进行驳回。

Cross-Parametric Generative Adversarial Network-Based Magnetic Resonance Image Feature Synthesis for Breast Lesion Classification

计算机科学 人工智能 判别式 特征(语言学) 磁共振成像 模式识别(心理学) 乳房磁振造影 参数统计 基本事实 特征提取 计算机视觉 乳腺癌 乳腺摄影术 癌症 放射科 医学 数学 哲学 内科学 统计 语言学
作者
Ming Fan,Guangyao Huang,Junhong Lou,Xin Gao,Tieyong Zeng,Lihua Li
出处
期刊:IEEE Journal of Biomedical and Health Informatics [Institute of Electrical and Electronics Engineers]
卷期号:27 (11): 5495-5505 被引量:5
标识
DOI:10.1109/jbhi.2023.3311021
摘要

Dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) contains information on tumor morphology and physiology for breast cancer diagnosis and treatment. However, this technology requires contrast agent injection with more acquisition time than other parametric images, such as T2-weighted imaging (T2WI). Current image synthesis methods attempt to map the image data from one domain to another, whereas it is challenging or even infeasible to map the images with one sequence into images with multiple sequences. Here, we propose a new approach of cross-parametric generative adversarial network (GAN)-based feature synthesis (CPGANFS) to generate discriminative DCE-MRI features from T2WI with applications in breast cancer diagnosis. The proposed approach decodes the T2W images into latent cross-parameter features to reconstruct the DCE-MRI and T2WI features by balancing the information shared between the two. A Wasserstein GAN with a gradient penalty is employed to differentiate the T2WI-generated features from ground-truth features extracted from DCE-MRI. The synthesized DCE-MRI feature-based model achieved significantly (p = 0.036) higher prediction performance (AUC = 0.866) in breast cancer diagnosis than that based on T2WI (AUC = 0.815). Visualization of the model shows that our CPGANFS method enhances the predictive power by levitating attention to the lesion and the surrounding parenchyma areas, which is driven by the interparametric information learned from T2WI and DCE-MRI. Our proposed CPGANFS provides a framework for cross-parametric MR image feature generation from a single-sequence image guided by an information-rich, time-series image with kinetic information. Extensive experimental results demonstrate its effectiveness with high interpretability and improved performance in breast cancer diagnosis.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
学术垃圾应助zain采纳,获得10
刚刚
QQ完成签到 ,获得积分10
刚刚
chh发布了新的文献求助30
刚刚
刚刚
Zo完成签到,获得积分10
1秒前
王雨晴完成签到,获得积分10
1秒前
zdfang完成签到,获得积分20
1秒前
慕青应助Leeyee采纳,获得20
1秒前
冷静白亦发布了新的文献求助10
2秒前
2秒前
2秒前
3秒前
4秒前
幽默尔蓝发布了新的文献求助10
4秒前
Akim应助笑点低涟妖采纳,获得10
5秒前
6秒前
孤独千愁发布了新的文献求助10
6秒前
Owen应助Zo采纳,获得30
6秒前
6秒前
6秒前
7秒前
Lolo发布了新的文献求助10
7秒前
anling完成签到,获得积分10
7秒前
鱿鱼发布了新的文献求助20
7秒前
包容灵萱完成签到,获得积分10
7秒前
梓时发布了新的文献求助30
7秒前
yxli完成签到,获得积分10
8秒前
8秒前
9秒前
优美白凝关注了科研通微信公众号
9秒前
9秒前
天天快乐应助rong_liang采纳,获得20
9秒前
动听的蛟凤完成签到,获得积分10
9秒前
10秒前
10秒前
Hou发布了新的文献求助10
10秒前
xm完成签到 ,获得积分10
10秒前
zain发布了新的文献求助10
11秒前
xz发布了新的文献求助80
11秒前
lz完成签到,获得积分10
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1001
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
On the application of advanced modeling tools to the SLB analysis in NuScale. Part I: TRACE/PARCS, TRACE/PANTHER and ATHLET/DYN3D 500
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
Haematolymphoid Tumours (Part A and Part B, WHO Classification of Tumours, 5th Edition, Volume 11) 400
Virus-like particles empower RNAi for effective control of a Coleopteran pest 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5467299
求助须知:如何正确求助?哪些是违规求助? 4571085
关于积分的说明 14328325
捐赠科研通 4497634
什么是DOI,文献DOI怎么找? 2464057
邀请新用户注册赠送积分活动 1452861
关于科研通互助平台的介绍 1427654