HiFun: homology independent protein function prediction by a novel protein-language self-attention model

注释 蛋白质功能预测 计算机科学 基因组 计算生物学 蛋白质功能 同源(生物学) 蛋白质测序 稳健性(进化) 人工智能 机器学习 生物 肽序列 遗传学 基因
作者
Jun Wu,Qing He,Jian Ouyang,Jiajia Zhang,Zihao Gao,Christopher E. Mason,Zhichao Liu,Tieliu Shi
出处
期刊:Briefings in Bioinformatics [Oxford University Press]
卷期号:24 (5)
标识
DOI:10.1093/bib/bbad311
摘要

Protein function prediction based on amino acid sequence alone is an extremely challenging but important task, especially in metagenomics/metatranscriptomics field, in which novel proteins have been uncovered exponentially from new microorganisms. Many of them are extremely low homology to known proteins and cannot be annotated with homology-based or information integrative methods. To overcome this problem, we proposed a Homology Independent protein Function annotation method (HiFun) based on a unified deep-learning model by reassembling the sequence as protein language. The robustness of HiFun was evaluated using the benchmark datasets and metrics in the CAFA3 challenge. To navigate the utility of HiFun, we annotated 2 212 663 unknown proteins and discovered novel motifs in the UHGP-50 catalog. We proved that HiFun can extract latent function related structure features which empowers it ability to achieve function annotation for non-homology proteins. HiFun can substantially improve newly proteins annotation and expand our understanding of microorganisms' adaptation in various ecological niches. Moreover, we provided a free and accessible webservice at http://www.unimd.org/HiFun, requiring only protein sequences as input, offering researchers an efficient and practical platform for predicting protein functions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
空白发布了新的文献求助10
1秒前
唐尔曼完成签到,获得积分10
1秒前
3秒前
NexusExplorer应助嘟嘟豆806采纳,获得10
3秒前
TristeOwen发布了新的文献求助10
4秒前
Aries完成签到,获得积分10
4秒前
上官若男应助闪闪的迎夏采纳,获得30
4秒前
Han发布了新的文献求助10
5秒前
险胜应助俊逸吐司采纳,获得10
5秒前
6秒前
落霞与孤鹜齐飞完成签到,获得积分10
6秒前
7秒前
7秒前
Akim应助Chenbiao采纳,获得10
7秒前
完美世界应助背后的尔琴采纳,获得10
8秒前
9秒前
JamesPei应助小小采纳,获得10
9秒前
秋糜发布了新的文献求助10
9秒前
10秒前
TEY完成签到 ,获得积分10
12秒前
LogZan完成签到,获得积分10
12秒前
爆米花应助Singularity采纳,获得10
12秒前
12秒前
13秒前
耍酷败发布了新的文献求助10
13秒前
13秒前
14秒前
14秒前
yj91完成签到,获得积分10
15秒前
CipherSage应助秋糜采纳,获得10
15秒前
li发布了新的文献求助30
15秒前
LogZan发布了新的文献求助10
15秒前
cocolu应助chenlin采纳,获得10
15秒前
linlin发布了新的文献求助10
16秒前
dangdanghong发布了新的文献求助10
16秒前
yyyyou完成签到,获得积分10
16秒前
桑丘子发布了新的文献求助10
18秒前
小旋风发布了新的文献求助10
18秒前
盆浴烟发布了新的文献求助10
18秒前
18秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Cognitive Paradigms in Knowledge Organisation 2000
Effect of reactor temperature on FCC yield 2000
Near Infrared Spectra of Origin-defined and Real-world Textiles (NIR-SORT): A spectroscopic and materials characterization dataset for known provenance and post-consumer fabrics 610
Introduction to Spectroscopic Ellipsometry of Thin Film Materials Instrumentation, Data Analysis, and Applications 600
Promoting women's entrepreneurship in developing countries: the case of the world's largest women-owned community-based enterprise 500
Shining Light on the Dark Side of Personality 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3308738
求助须知:如何正确求助?哪些是违规求助? 2942021
关于积分的说明 8507135
捐赠科研通 2617034
什么是DOI,文献DOI怎么找? 1429940
科研通“疑难数据库(出版商)”最低求助积分说明 663969
邀请新用户注册赠送积分活动 649160