A Simple Divide-and-Conquer-based Distributed Method for the Accelerated Failure Time Model

分而治之算法 计算机科学 简单(哲学) 算法 理论计算机科学 认识论 哲学
作者
Lanjue Chen,Jin Su,Alan T. K. Wan,Yong Zhou
出处
期刊:Journal of Computational and Graphical Statistics [Informa]
卷期号:33 (2): 681-698
标识
DOI:10.1080/10618600.2023.2252028
摘要

AbstractThe accelerated failure time (AFT) model is an appealing tool in survival analysis because of its ease of interpretation, but when there is a large volume of data, fitting an AFT model and carrying out the associated inference on one computer can be computationally demanding. This poses a severe limitation for the application of the AFT model in the face of big data. The article addresses this problem by developing a simple distributed method for estimating the parameters of an AFT model based on the divide-and-conquer strategy, which has the dual benefits of statistical efficiency and computational economy. It is an iterative method that involves, for the most part, some rather simple algebraic operations, except for obtaining the initial estimate, which is based on a smoothed approximation of the Gehan estimating equation. Our results show that the proposed method yields estimates that converge after a few iterations and an estimator that is asymptotically as efficient as the benchmark estimator obtained by using the full data in one go. We also develop an associated inference procedure. The merits of the proposed method are demonstrated via an extensive simulation study. The method is applied to a kidney transplantation dataset. Supplementary materials for this article are available online.KEYWORDS: Accelerated failure time modelAlgorithmBig dataDistributed inferenceDivide-and-conquerGehan estimating equation Supplementary MaterialsR code: We provide R code to replicate the simulation studies.Appendix: Theoretical proofs of Theorems 1–4 are provided in the appendix.AcknowledgementWe thank the Editor, Associate Editor and referees for comments and suggestions on an earlier version of this paper. All remaining errors are ours.Disclosure StatementNo potential conflict of interest was reported by the author.Additional informationFundingWan's work was supported by the Hong Kong Research Grant Council (CityU-11501522) and the National Natural Science Foundation of China (72273120). Zhou's work is supported by the National Key Research and Development Program of China (2021YFA1000100 and 2021YFA1000101) and the State Key Program of National Natural Science Foundation of China (71931004).

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
DTS发布了新的文献求助10
1秒前
YI_JIA_YI完成签到,获得积分10
1秒前
小痞子完成签到 ,获得积分10
1秒前
苗灵雁完成签到,获得积分10
2秒前
2秒前
2秒前
2秒前
善学以致用应助超级的鞅采纳,获得10
2秒前
猪猪hero应助elang采纳,获得10
3秒前
weiyi发布了新的文献求助10
4秒前
佩琪完成签到,获得积分10
4秒前
包容秋珊发布了新的文献求助10
4秒前
缥缈的涵菡完成签到 ,获得积分10
5秒前
冷酷的溜溜梅完成签到 ,获得积分10
5秒前
6秒前
kaikai完成签到,获得积分10
6秒前
鱼鱼鱼发布了新的文献求助10
6秒前
带善人完成签到,获得积分10
6秒前
7秒前
7秒前
科研通AI6应助zhangyulong采纳,获得10
7秒前
爆爆发布了新的文献求助10
8秒前
8秒前
8秒前
8秒前
8秒前
小雨堂完成签到,获得积分10
9秒前
研友_VZG7GZ应助萝卜采纳,获得10
10秒前
10秒前
10秒前
hu123完成签到,获得积分10
11秒前
领导范儿应助DTS采纳,获得10
11秒前
11秒前
moyu37完成签到,获得积分10
11秒前
11秒前
12秒前
李xxxx发布了新的文献求助10
12秒前
愚林2024发布了新的文献求助10
12秒前
震动的雪一完成签到,获得积分10
12秒前
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Basic And Clinical Science Course 2025-2026 3000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
人脑智能与人工智能 1000
花の香りの秘密―遺伝子情報から機能性まで 800
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
Pharmacology for Chemists: Drug Discovery in Context 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5608256
求助须知:如何正确求助?哪些是违规求助? 4692810
关于积分的说明 14875754
捐赠科研通 4717042
什么是DOI,文献DOI怎么找? 2544147
邀请新用户注册赠送积分活动 1509105
关于科研通互助平台的介绍 1472802