A Simple Divide-and-Conquer-based Distributed Method for the Accelerated Failure Time Model

分而治之算法 计算机科学 简单(哲学) 算法 理论计算机科学 哲学 认识论
作者
Lanjue Chen,Jin Su,Alan T. K. Wan,Yong Zhou
出处
期刊:Journal of Computational and Graphical Statistics [Taylor & Francis]
卷期号:33 (2): 681-698
标识
DOI:10.1080/10618600.2023.2252028
摘要

AbstractThe accelerated failure time (AFT) model is an appealing tool in survival analysis because of its ease of interpretation, but when there is a large volume of data, fitting an AFT model and carrying out the associated inference on one computer can be computationally demanding. This poses a severe limitation for the application of the AFT model in the face of big data. The article addresses this problem by developing a simple distributed method for estimating the parameters of an AFT model based on the divide-and-conquer strategy, which has the dual benefits of statistical efficiency and computational economy. It is an iterative method that involves, for the most part, some rather simple algebraic operations, except for obtaining the initial estimate, which is based on a smoothed approximation of the Gehan estimating equation. Our results show that the proposed method yields estimates that converge after a few iterations and an estimator that is asymptotically as efficient as the benchmark estimator obtained by using the full data in one go. We also develop an associated inference procedure. The merits of the proposed method are demonstrated via an extensive simulation study. The method is applied to a kidney transplantation dataset. Supplementary materials for this article are available online.KEYWORDS: Accelerated failure time modelAlgorithmBig dataDistributed inferenceDivide-and-conquerGehan estimating equation Supplementary MaterialsR code: We provide R code to replicate the simulation studies.Appendix: Theoretical proofs of Theorems 1–4 are provided in the appendix.AcknowledgementWe thank the Editor, Associate Editor and referees for comments and suggestions on an earlier version of this paper. All remaining errors are ours.Disclosure StatementNo potential conflict of interest was reported by the author.Additional informationFundingWan's work was supported by the Hong Kong Research Grant Council (CityU-11501522) and the National Natural Science Foundation of China (72273120). Zhou's work is supported by the National Key Research and Development Program of China (2021YFA1000100 and 2021YFA1000101) and the State Key Program of National Natural Science Foundation of China (71931004).
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
眼睛大的念桃完成签到,获得积分10
4秒前
柚子完成签到,获得积分10
5秒前
Rita应助underway采纳,获得10
5秒前
匆匆而过完成签到 ,获得积分10
6秒前
123321完成签到 ,获得积分10
7秒前
woshibyu完成签到 ,获得积分20
8秒前
雪碧完成签到 ,获得积分10
9秒前
11秒前
量子星尘发布了新的文献求助10
11秒前
刘一完成签到 ,获得积分10
13秒前
科科完成签到 ,获得积分10
14秒前
tfq200发布了新的文献求助10
14秒前
七七完成签到 ,获得积分10
17秒前
英俊的铭应助tfq200采纳,获得10
18秒前
ky完成签到,获得积分10
20秒前
21秒前
FashionBoy应助苏苏没有可乐采纳,获得10
21秒前
不敢装睡完成签到,获得积分10
24秒前
伊笙完成签到 ,获得积分0
25秒前
25秒前
量子星尘发布了新的文献求助10
27秒前
玺青一生完成签到 ,获得积分10
30秒前
高速旋转老沁完成签到 ,获得积分10
34秒前
凉拌冰阔落完成签到 ,获得积分10
34秒前
郑zhenglanyou完成签到 ,获得积分10
35秒前
沉静的清涟完成签到,获得积分10
37秒前
一条摆摆的沙丁鱼完成签到 ,获得积分10
38秒前
啊哈哈哈哈哈完成签到 ,获得积分10
39秒前
39秒前
情怀应助yyy采纳,获得10
42秒前
量子星尘发布了新的文献求助10
44秒前
45秒前
45秒前
愛研究完成签到,获得积分10
46秒前
光之美少女完成签到 ,获得积分10
47秒前
微笑的若魔完成签到 ,获得积分10
48秒前
123456完成签到 ,获得积分10
49秒前
50秒前
严究生发布了新的文献求助10
52秒前
村长热爱美丽完成签到 ,获得积分10
55秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
Comparison of spinal anesthesia and general anesthesia in total hip and total knee arthroplasty: a meta-analysis and systematic review 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
Modern Britain, 1750 to the Present (第2版) 300
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
Lightning Wires: The Telegraph and China's Technological Modernization, 1860-1890 250
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4597530
求助须知:如何正确求助?哪些是违规求助? 4009101
关于积分的说明 12409876
捐赠科研通 3688331
什么是DOI,文献DOI怎么找? 2033101
邀请新用户注册赠送积分活动 1066366
科研通“疑难数据库(出版商)”最低求助积分说明 951605