A Simple Divide-and-Conquer-based Distributed Method for the Accelerated Failure Time Model

分而治之算法 计算机科学 简单(哲学) 算法 理论计算机科学 认识论 哲学
作者
Lanjue Chen,Jin Su,Alan T. K. Wan,Yong Zhou
出处
期刊:Journal of Computational and Graphical Statistics [Informa]
卷期号:33 (2): 681-698
标识
DOI:10.1080/10618600.2023.2252028
摘要

AbstractThe accelerated failure time (AFT) model is an appealing tool in survival analysis because of its ease of interpretation, but when there is a large volume of data, fitting an AFT model and carrying out the associated inference on one computer can be computationally demanding. This poses a severe limitation for the application of the AFT model in the face of big data. The article addresses this problem by developing a simple distributed method for estimating the parameters of an AFT model based on the divide-and-conquer strategy, which has the dual benefits of statistical efficiency and computational economy. It is an iterative method that involves, for the most part, some rather simple algebraic operations, except for obtaining the initial estimate, which is based on a smoothed approximation of the Gehan estimating equation. Our results show that the proposed method yields estimates that converge after a few iterations and an estimator that is asymptotically as efficient as the benchmark estimator obtained by using the full data in one go. We also develop an associated inference procedure. The merits of the proposed method are demonstrated via an extensive simulation study. The method is applied to a kidney transplantation dataset. Supplementary materials for this article are available online.KEYWORDS: Accelerated failure time modelAlgorithmBig dataDistributed inferenceDivide-and-conquerGehan estimating equation Supplementary MaterialsR code: We provide R code to replicate the simulation studies.Appendix: Theoretical proofs of Theorems 1–4 are provided in the appendix.AcknowledgementWe thank the Editor, Associate Editor and referees for comments and suggestions on an earlier version of this paper. All remaining errors are ours.Disclosure StatementNo potential conflict of interest was reported by the author.Additional informationFundingWan's work was supported by the Hong Kong Research Grant Council (CityU-11501522) and the National Natural Science Foundation of China (72273120). Zhou's work is supported by the National Key Research and Development Program of China (2021YFA1000100 and 2021YFA1000101) and the State Key Program of National Natural Science Foundation of China (71931004).

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
华莱士小怪完成签到,获得积分10
刚刚
研友_LJGpan完成签到,获得积分10
刚刚
FashionBoy应助zhshengu采纳,获得20
刚刚
量子星尘发布了新的文献求助10
刚刚
1秒前
1秒前
1秒前
华仔应助外向小猫咪采纳,获得10
1秒前
2秒前
up发布了新的文献求助30
2秒前
英姑应助Luhh采纳,获得10
2秒前
甜美三娘完成签到,获得积分10
3秒前
英姑应助byl采纳,获得10
3秒前
3秒前
Orange应助从容听南采纳,获得10
3秒前
4秒前
爆米花应助wang采纳,获得10
4秒前
4秒前
4秒前
4秒前
ding应助斯文慕山采纳,获得10
4秒前
针尖上的王子完成签到,获得积分10
4秒前
77发布了新的文献求助10
5秒前
Certainty橙子完成签到 ,获得积分10
5秒前
糖霜烤面包完成签到 ,获得积分10
5秒前
我是老大应助zhaosheng采纳,获得10
5秒前
生动的怜菡完成签到,获得积分10
6秒前
wuxiao完成签到,获得积分10
6秒前
Alberat完成签到,获得积分10
6秒前
细腻的惜梦完成签到,获得积分10
6秒前
6秒前
万能图书馆应助123采纳,获得10
7秒前
7秒前
爱吃橙子完成签到 ,获得积分10
7秒前
噜噜噜完成签到,获得积分10
7秒前
7秒前
月是故乡明完成签到,获得积分10
8秒前
柳叶完成签到,获得积分10
9秒前
9秒前
han发布了新的文献求助10
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
Metagames: Games about Games 700
King Tyrant 680
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5573881
求助须知:如何正确求助?哪些是违规求助? 4660158
关于积分的说明 14728086
捐赠科研通 4599956
什么是DOI,文献DOI怎么找? 2524610
邀请新用户注册赠送积分活动 1494975
关于科研通互助平台的介绍 1464997