A Simple Divide-and-Conquer-based Distributed Method for the Accelerated Failure Time Model

分而治之算法 计算机科学 简单(哲学) 算法 理论计算机科学 认识论 哲学
作者
Lanjue Chen,Jin Su,Alan T. K. Wan,Yong Zhou
出处
期刊:Journal of Computational and Graphical Statistics [Informa]
卷期号:33 (2): 681-698
标识
DOI:10.1080/10618600.2023.2252028
摘要

AbstractThe accelerated failure time (AFT) model is an appealing tool in survival analysis because of its ease of interpretation, but when there is a large volume of data, fitting an AFT model and carrying out the associated inference on one computer can be computationally demanding. This poses a severe limitation for the application of the AFT model in the face of big data. The article addresses this problem by developing a simple distributed method for estimating the parameters of an AFT model based on the divide-and-conquer strategy, which has the dual benefits of statistical efficiency and computational economy. It is an iterative method that involves, for the most part, some rather simple algebraic operations, except for obtaining the initial estimate, which is based on a smoothed approximation of the Gehan estimating equation. Our results show that the proposed method yields estimates that converge after a few iterations and an estimator that is asymptotically as efficient as the benchmark estimator obtained by using the full data in one go. We also develop an associated inference procedure. The merits of the proposed method are demonstrated via an extensive simulation study. The method is applied to a kidney transplantation dataset. Supplementary materials for this article are available online.KEYWORDS: Accelerated failure time modelAlgorithmBig dataDistributed inferenceDivide-and-conquerGehan estimating equation Supplementary MaterialsR code: We provide R code to replicate the simulation studies.Appendix: Theoretical proofs of Theorems 1–4 are provided in the appendix.AcknowledgementWe thank the Editor, Associate Editor and referees for comments and suggestions on an earlier version of this paper. All remaining errors are ours.Disclosure StatementNo potential conflict of interest was reported by the author.Additional informationFundingWan's work was supported by the Hong Kong Research Grant Council (CityU-11501522) and the National Natural Science Foundation of China (72273120). Zhou's work is supported by the National Key Research and Development Program of China (2021YFA1000100 and 2021YFA1000101) and the State Key Program of National Natural Science Foundation of China (71931004).

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
量子星尘发布了新的文献求助10
刚刚
3秒前
Shan发布了新的文献求助10
3秒前
量子星尘发布了新的文献求助10
5秒前
充电宝应助zzzz采纳,获得10
5秒前
6秒前
bunny发布了新的文献求助10
6秒前
9秒前
10秒前
JunHan发布了新的文献求助10
10秒前
shlin完成签到,获得积分10
11秒前
11秒前
zz应助摸鱼大王采纳,获得10
12秒前
猪猪hero应助摸鱼大王采纳,获得10
12秒前
wanci应助hh采纳,获得10
12秒前
Owen应助周周采纳,获得10
13秒前
xy820完成签到,获得积分20
14秒前
Shan完成签到,获得积分10
15秒前
天天学习完成签到,获得积分10
16秒前
Zer完成签到,获得积分0
16秒前
16秒前
17秒前
zzzzzz完成签到,获得积分10
17秒前
xy820发布了新的文献求助10
17秒前
18秒前
科研通AI6.1应助深情素阴采纳,获得10
18秒前
19秒前
打打应助小怪兽不吃人采纳,获得10
19秒前
科研通AI6.1应助bunny采纳,获得10
20秒前
风吃掉月亮完成签到,获得积分10
21秒前
风趣绯完成签到,获得积分20
21秒前
十五完成签到,获得积分10
21秒前
21秒前
22秒前
YYDS666完成签到,获得积分10
22秒前
开朗的大叔完成签到,获得积分10
23秒前
23秒前
23秒前
甜美的千青完成签到 ,获得积分10
23秒前
24秒前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 40000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Ägyptische Geschichte der 21.–30. Dynastie 2500
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
„Semitische Wissenschaften“? 1510
从k到英国情人 1500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5742729
求助须知:如何正确求助?哪些是违规求助? 5409935
关于积分的说明 15345601
捐赠科研通 4883834
什么是DOI,文献DOI怎么找? 2625399
邀请新用户注册赠送积分活动 1574188
关于科研通互助平台的介绍 1531146