A Simple Divide-and-Conquer-based Distributed Method for the Accelerated Failure Time Model

分而治之算法 计算机科学 简单(哲学) 算法 理论计算机科学 认识论 哲学
作者
Lanjue Chen,Jin Su,Alan T. K. Wan,Yong Zhou
出处
期刊:Journal of Computational and Graphical Statistics [Informa]
卷期号:33 (2): 681-698
标识
DOI:10.1080/10618600.2023.2252028
摘要

AbstractThe accelerated failure time (AFT) model is an appealing tool in survival analysis because of its ease of interpretation, but when there is a large volume of data, fitting an AFT model and carrying out the associated inference on one computer can be computationally demanding. This poses a severe limitation for the application of the AFT model in the face of big data. The article addresses this problem by developing a simple distributed method for estimating the parameters of an AFT model based on the divide-and-conquer strategy, which has the dual benefits of statistical efficiency and computational economy. It is an iterative method that involves, for the most part, some rather simple algebraic operations, except for obtaining the initial estimate, which is based on a smoothed approximation of the Gehan estimating equation. Our results show that the proposed method yields estimates that converge after a few iterations and an estimator that is asymptotically as efficient as the benchmark estimator obtained by using the full data in one go. We also develop an associated inference procedure. The merits of the proposed method are demonstrated via an extensive simulation study. The method is applied to a kidney transplantation dataset. Supplementary materials for this article are available online.KEYWORDS: Accelerated failure time modelAlgorithmBig dataDistributed inferenceDivide-and-conquerGehan estimating equation Supplementary MaterialsR code: We provide R code to replicate the simulation studies.Appendix: Theoretical proofs of Theorems 1–4 are provided in the appendix.AcknowledgementWe thank the Editor, Associate Editor and referees for comments and suggestions on an earlier version of this paper. All remaining errors are ours.Disclosure StatementNo potential conflict of interest was reported by the author.Additional informationFundingWan's work was supported by the Hong Kong Research Grant Council (CityU-11501522) and the National Natural Science Foundation of China (72273120). Zhou's work is supported by the National Key Research and Development Program of China (2021YFA1000100 and 2021YFA1000101) and the State Key Program of National Natural Science Foundation of China (71931004).

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
lgold发布了新的文献求助10
2秒前
归尘发布了新的文献求助10
2秒前
2秒前
orixero应助威武的大象采纳,获得10
2秒前
makabakap发布了新的文献求助10
3秒前
八万完成签到,获得积分10
3秒前
大反应釜发布了新的文献求助10
3秒前
4秒前
5秒前
刘震完成签到,获得积分10
6秒前
汤襄完成签到,获得积分10
7秒前
8秒前
科研通AI6.1应助贪玩板凳采纳,获得10
8秒前
8秒前
moiumuio完成签到,获得积分0
8秒前
8秒前
隐形曼青应助姜茶采纳,获得10
9秒前
bluhenden发布了新的文献求助10
9秒前
昏睡的嵩应助bei采纳,获得10
9秒前
科研通AI6.1应助jianwu采纳,获得100
9秒前
量子星尘发布了新的文献求助10
10秒前
10秒前
11秒前
科研狗完成签到 ,获得积分10
11秒前
无私的黄豆完成签到 ,获得积分10
11秒前
himon完成签到,获得积分10
11秒前
小二郎应助邦尼老师采纳,获得10
11秒前
11秒前
共享精神应助zx采纳,获得10
12秒前
健壮的凌蝶完成签到 ,获得积分10
12秒前
12秒前
殷勤的小松鼠完成签到,获得积分10
12秒前
量子星尘发布了新的文献求助10
12秒前
12秒前
tree完成签到,获得积分10
13秒前
Xhhaai发布了新的文献求助10
13秒前
好苗子发布了新的文献求助10
14秒前
英俊的铭应助小段采纳,获得30
14秒前
14秒前
14秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Quaternary Science Reference Third edition 6000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Aerospace Engineering Education During the First Century of Flight 3000
Agyptische Geschichte der 21.30. Dynastie 3000
Les Mantodea de guyane 2000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5785064
求助须知:如何正确求助?哪些是违规求助? 5685309
关于积分的说明 15466430
捐赠科研通 4914115
什么是DOI,文献DOI怎么找? 2645093
邀请新用户注册赠送积分活动 1592886
关于科研通互助平台的介绍 1547281