A Simple Divide-and-Conquer-based Distributed Method for the Accelerated Failure Time Model

分而治之算法 计算机科学 简单(哲学) 算法 理论计算机科学 认识论 哲学
作者
Lanjue Chen,Jin Su,Alan T. K. Wan,Yong Zhou
出处
期刊:Journal of Computational and Graphical Statistics [Taylor & Francis]
卷期号:33 (2): 681-698
标识
DOI:10.1080/10618600.2023.2252028
摘要

AbstractThe accelerated failure time (AFT) model is an appealing tool in survival analysis because of its ease of interpretation, but when there is a large volume of data, fitting an AFT model and carrying out the associated inference on one computer can be computationally demanding. This poses a severe limitation for the application of the AFT model in the face of big data. The article addresses this problem by developing a simple distributed method for estimating the parameters of an AFT model based on the divide-and-conquer strategy, which has the dual benefits of statistical efficiency and computational economy. It is an iterative method that involves, for the most part, some rather simple algebraic operations, except for obtaining the initial estimate, which is based on a smoothed approximation of the Gehan estimating equation. Our results show that the proposed method yields estimates that converge after a few iterations and an estimator that is asymptotically as efficient as the benchmark estimator obtained by using the full data in one go. We also develop an associated inference procedure. The merits of the proposed method are demonstrated via an extensive simulation study. The method is applied to a kidney transplantation dataset. Supplementary materials for this article are available online.KEYWORDS: Accelerated failure time modelAlgorithmBig dataDistributed inferenceDivide-and-conquerGehan estimating equation Supplementary MaterialsR code: We provide R code to replicate the simulation studies.Appendix: Theoretical proofs of Theorems 1–4 are provided in the appendix.AcknowledgementWe thank the Editor, Associate Editor and referees for comments and suggestions on an earlier version of this paper. All remaining errors are ours.Disclosure StatementNo potential conflict of interest was reported by the author.Additional informationFundingWan's work was supported by the Hong Kong Research Grant Council (CityU-11501522) and the National Natural Science Foundation of China (72273120). Zhou's work is supported by the National Key Research and Development Program of China (2021YFA1000100 and 2021YFA1000101) and the State Key Program of National Natural Science Foundation of China (71931004).
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
开朗篮球完成签到,获得积分10
1秒前
善学以致用应助苏生鑫采纳,获得10
1秒前
隐形的长颈鹿完成签到 ,获得积分10
1秒前
研友_Lw7MKL完成签到,获得积分10
2秒前
轵关宣方发布了新的文献求助10
2秒前
时运完成签到,获得积分10
2秒前
Stroeve完成签到,获得积分10
3秒前
4秒前
5秒前
6秒前
6秒前
7秒前
dragon wu发布了新的文献求助10
8秒前
QQ发布了新的文献求助10
9秒前
Tony12发布了新的文献求助20
9秒前
9秒前
安妮发布了新的文献求助10
10秒前
希望天下0贩的0应助cancan采纳,获得10
10秒前
10秒前
10秒前
西南楚留香完成签到,获得积分0
10秒前
11秒前
禮貌完成签到,获得积分20
11秒前
完美世界应助dragon wu采纳,获得30
12秒前
CipherSage应助ssyl34采纳,获得10
12秒前
轵关宣方完成签到,获得积分10
12秒前
13秒前
panbl451245发布了新的文献求助10
14秒前
慕容雅柏完成签到 ,获得积分10
14秒前
风轻云淡完成签到,获得积分20
14秒前
QQ完成签到,获得积分10
16秒前
libob发布了新的文献求助10
16秒前
16秒前
开放世界完成签到,获得积分10
17秒前
xiaolei完成签到 ,获得积分10
18秒前
小豆芽发布了新的文献求助20
20秒前
22秒前
nina发布了新的文献求助10
22秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 600
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3967722
求助须知:如何正确求助?哪些是违规求助? 3512889
关于积分的说明 11165380
捐赠科研通 3247919
什么是DOI,文献DOI怎么找? 1794067
邀请新用户注册赠送积分活动 874836
科研通“疑难数据库(出版商)”最低求助积分说明 804578