亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

A Simple Divide-and-Conquer-based Distributed Method for the Accelerated Failure Time Model

分而治之算法 计算机科学 简单(哲学) 算法 理论计算机科学 哲学 认识论
作者
Lanjue Chen,Jin Su,Alan T. K. Wan,Yong Zhou
出处
期刊:Journal of Computational and Graphical Statistics [Informa]
卷期号:33 (2): 681-698
标识
DOI:10.1080/10618600.2023.2252028
摘要

AbstractThe accelerated failure time (AFT) model is an appealing tool in survival analysis because of its ease of interpretation, but when there is a large volume of data, fitting an AFT model and carrying out the associated inference on one computer can be computationally demanding. This poses a severe limitation for the application of the AFT model in the face of big data. The article addresses this problem by developing a simple distributed method for estimating the parameters of an AFT model based on the divide-and-conquer strategy, which has the dual benefits of statistical efficiency and computational economy. It is an iterative method that involves, for the most part, some rather simple algebraic operations, except for obtaining the initial estimate, which is based on a smoothed approximation of the Gehan estimating equation. Our results show that the proposed method yields estimates that converge after a few iterations and an estimator that is asymptotically as efficient as the benchmark estimator obtained by using the full data in one go. We also develop an associated inference procedure. The merits of the proposed method are demonstrated via an extensive simulation study. The method is applied to a kidney transplantation dataset. Supplementary materials for this article are available online.KEYWORDS: Accelerated failure time modelAlgorithmBig dataDistributed inferenceDivide-and-conquerGehan estimating equation Supplementary MaterialsR code: We provide R code to replicate the simulation studies.Appendix: Theoretical proofs of Theorems 1–4 are provided in the appendix.AcknowledgementWe thank the Editor, Associate Editor and referees for comments and suggestions on an earlier version of this paper. All remaining errors are ours.Disclosure StatementNo potential conflict of interest was reported by the author.Additional informationFundingWan's work was supported by the Hong Kong Research Grant Council (CityU-11501522) and the National Natural Science Foundation of China (72273120). Zhou's work is supported by the National Key Research and Development Program of China (2021YFA1000100 and 2021YFA1000101) and the State Key Program of National Natural Science Foundation of China (71931004).
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
jacob258完成签到 ,获得积分10
6秒前
John完成签到,获得积分10
7秒前
西瓜完成签到 ,获得积分10
9秒前
13秒前
14秒前
27秒前
Sophiaaa完成签到 ,获得积分10
29秒前
小二郎应助科研通管家采纳,获得10
35秒前
45秒前
46秒前
49秒前
licnyu完成签到,获得积分20
50秒前
好困应助morena采纳,获得10
55秒前
卓卓卓发布了新的文献求助10
55秒前
彭于晏应助licnyu采纳,获得50
56秒前
1分钟前
1分钟前
1分钟前
1分钟前
1分钟前
1分钟前
1分钟前
1分钟前
1分钟前
1分钟前
1分钟前
1分钟前
1分钟前
1分钟前
1分钟前
1分钟前
1分钟前
1分钟前
1分钟前
1分钟前
121314wld发布了新的文献求助10
1分钟前
121314wld发布了新的文献求助10
1分钟前
121314wld发布了新的文献求助10
1分钟前
121314wld发布了新的文献求助10
1分钟前
121314wld发布了新的文献求助10
1分钟前
高分求助中
Shape Determination of Large Sedimental Rock Fragments 2000
Sustainability in Tides Chemistry 2000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
A Dissection Guide & Atlas to the Rabbit 600
Very-high-order BVD Schemes Using β-variable THINC Method 568
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3130230
求助须知:如何正确求助?哪些是违规求助? 2780956
关于积分的说明 7750532
捐赠科研通 2436201
什么是DOI,文献DOI怎么找? 1294557
科研通“疑难数据库(出版商)”最低求助积分说明 623731
版权声明 600590