亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

AoI-Aware User Service Satisfaction Enhancement in Digital Twin-Empowered Edge Computing

计算机科学 供应 云计算 公制(单位) GSM演进的增强数据速率 移动边缘计算 网络延迟 最大化 分布式计算 服务(商务) 性能指标 计算机网络 数学优化 人工智能 网络数据包 经济 经济 管理 操作系统 数学 运营管理
作者
Jing Li,Song Guo,Weifa Liang,Jianping Wang,Quan Chen,Zichuan Xu,Wenzheng Xu
出处
期刊:IEEE ACM Transactions on Networking [Institute of Electrical and Electronics Engineers]
卷期号:: 1-14
标识
DOI:10.1109/tnet.2023.3324704
摘要

The emerging digital twin technique enhances the network management efficiency and provides comprehensive insights on network performance, through mapping physical objects to their digital twins. The user satisfaction on digital twin-enabled service relies on the freshness of digital twin data, which is measured by the Age of Information (AoI). Due to long service delays, the use of the remote cloud for delay-sensitive service provisioning faces serious challenges. Mobile Edge Computing (MEC), as an ideal paradigm for delay-sensitive services, is able to realize real-time data communication between physical objects and their digital twins at the network edge. However, the mobility of physical objects and dynamics of user query arrivals make seamless service provisioning in MEC become challenging. In this paper, we investigate dynamic digital twin placements for improving user service satisfaction in MEC environments, by introducing a novel metric to measure user service satisfaction based on the AoI concept and formulating two user service satisfaction enhancement problems: the static and dynamic utility maximization problems under static and dynamic digital twin placement schemes. To this end, we first formulate an Integer Linear Programming (ILP) solution to the static utility maximization problem when the problem size is small; otherwise, we propose a performance-guaranteed approximation algorithm. We then propose an online algorithm with a provable competitive ratio for the dynamic utility maximization problem, by considering dynamic user query services. Finally, we evaluate the performance of the proposed algorithms via simulations. Simulation results demonstrate that the proposed algorithms outperform the comparison baseline algorithms, improving the algorithm performance by at least $10.7\%$ , compared to the baseline algorithms.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
jrjsoshrnend发布了新的文献求助10
3秒前
carrieschen发布了新的文献求助30
16秒前
张可完成签到 ,获得积分10
27秒前
29秒前
carrieschen完成签到,获得积分10
31秒前
文静三颜完成签到,获得积分10
37秒前
余凌兰完成签到 ,获得积分10
51秒前
51秒前
54秒前
LZY发布了新的文献求助10
55秒前
VuuVuu发布了新的文献求助10
58秒前
共享精神应助时尚的秋白采纳,获得10
59秒前
1分钟前
我是老大应助科研通管家采纳,获得10
1分钟前
1分钟前
1分钟前
ZHI发布了新的文献求助10
1分钟前
2分钟前
sjadsqf完成签到 ,获得积分10
2分钟前
zho发布了新的文献求助10
2分钟前
格林发布了新的文献求助10
2分钟前
研友_VZG7GZ应助ZHI采纳,获得10
2分钟前
信封完成签到 ,获得积分10
2分钟前
3分钟前
3分钟前
3分钟前
难过的踏歌完成签到,获得积分10
3分钟前
3分钟前
jiang伟完成签到,获得积分20
3分钟前
Owen应助科研通管家采纳,获得10
3分钟前
Xiaoxiao应助科研通管家采纳,获得10
3分钟前
所所应助科研通管家采纳,获得10
3分钟前
Xiaoxiao应助科研通管家采纳,获得10
3分钟前
科研通AI2S应助科研通管家采纳,获得10
3分钟前
Xiaoxiao应助科研通管家采纳,获得10
3分钟前
3分钟前
两个轮完成签到 ,获得积分10
3分钟前
Augustines完成签到,获得积分10
3分钟前
DoubleW完成签到 ,获得积分10
3分钟前
一定能成功!完成签到,获得积分10
4分钟前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Mechanistic Modeling of Gas-Liquid Two-Phase Flow in Pipes 2500
Structural Load Modelling and Combination for Performance and Safety Evaluation 800
Conference Record, IAS Annual Meeting 1977 610
Interest Rate Modeling. Volume 3: Products and Risk Management 600
Interest Rate Modeling. Volume 2: Term Structure Models 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3555707
求助须知:如何正确求助?哪些是违规求助? 3131341
关于积分的说明 9390816
捐赠科研通 2831055
什么是DOI,文献DOI怎么找? 1556317
邀请新用户注册赠送积分活动 726483
科研通“疑难数据库(出版商)”最低求助积分说明 715803