亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Breaking the ESG rating divergence: An open geospatial framework for environmental scores

地理空间分析 业务 公司治理 企业社会责任 资产(计算机安全) 一致性(知识库) 环境资源管理 会计 财务 计算机科学 经济 公共关系 地理 计算机安全 地图学 政治学 人工智能
作者
Cristian Rossi,Justin Gd Byrne,Christophe Christiaen
出处
期刊:Journal of Environmental Management [Elsevier]
卷期号:349: 119477-119477 被引量:3
标识
DOI:10.1016/j.jenvman.2023.119477
摘要

Information about a company's environmental, social and governance (ESG) performance has become increasingly important in the decision-making process of financial institutions. The financial implications of environmental challenges (e.g. water stress), negative social impacts (e.g. health impacts in local communities) or poor corporate governance (e.g. breaching legislation) all continue to increase. Accordingly, there is a need for financial institutions to incorporate information on ESG risks, opportunities and impacts in decisions that relate to risk management, investments, credit, strategy, and reporting. ESG information is typically disseminated through ESG ratings, which combine the three constituents into a single rating, or ascribe them separate scores. The compilation of ESG ratings and the identification of appropriate data sources is an inherently complex process; as such, there is no single standard for data collection or reporting. This has led to a divergence in the underlying data sources used by different rating providers, as well as in the determination of factors that are deemed worthy of measurement in the first place. For example, when assessing a company's environmental impact, one rating provider may rely on company-provided data, while another may incorporate independent third-party assessments. Unfortunately, there is currently no clear mechanism for effectively resolving such disagreements to establish a standardised approach to ESG rating assessments. However, geospatial data and analyses offer several key advantages for ESG assessments, including consistency, the potential for enhanced accuracy, and the ability to identify and assess environmental impacts at a detailed physical asset level, in addition to evaluating the broader spatial context. By incorporating geospatial information (obtained through manually processing remotely sensed data, or by using existing products) rating methodologies can be improved, and disparities can be addressed more effectively. This would enable a more comprehensive understanding of the environmental considerations of ESG assessments, promoting a more informed and precise decision-making process. Within this context, a few institutions (e.g. the University of Oxford, the WWF, and a few others) are pioneering thought leadership around spatial finance, including the assessment of ESG issues utilising geospatial intelligence, but there are no consistent frameworks for incorporating geospatial data into ESG ratings and analysis. This paper explores the opportunity for such a geospatial environmental scoring framework, defining a variety of methods in which open data with broad geographic coverage could be incorporated into ESG analysis, generalisable to a range of assets and sectors. The proposed framework is organised into two categories: localised effects, which directly impact the immediate vicinity of an asset, and delocalised effects, which contribute to global climate change and atmospheric pollution. Sub-scores are defined within these categories, which capture both the localised effects on land use, biodiversity, soils, and hydrology, and the global impacts resulting from atmospheric emissions. The approaches for handling geospatial data to generate both these sub-scores and the final E-score are presented, including a test case, and the complete methodology is made available in open repositories.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Ffegrbgbsssgr完成签到,获得积分20
8秒前
淡淡醉波wuliao完成签到 ,获得积分10
48秒前
田様应助阿明采纳,获得10
49秒前
慢慢的地理人完成签到,获得积分10
1分钟前
wxy完成签到 ,获得积分10
1分钟前
Hello应助外向板栗采纳,获得10
1分钟前
1分钟前
酚酞v发布了新的文献求助10
1分钟前
所所应助酚酞v采纳,获得10
2分钟前
在水一方完成签到 ,获得积分0
2分钟前
奔跑的蒲公英完成签到,获得积分10
3分钟前
123456完成签到,获得积分0
3分钟前
KY Mr.WANG完成签到,获得积分10
3分钟前
吕半鬼完成签到,获得积分10
3分钟前
拜托你清醒一点完成签到 ,获得积分10
3分钟前
4分钟前
阿明发布了新的文献求助10
4分钟前
感动白开水完成签到,获得积分10
4分钟前
无花果应助阿明采纳,获得30
4分钟前
顾矜应助季1采纳,获得10
4分钟前
4分钟前
外向板栗发布了新的文献求助10
4分钟前
5分钟前
季1发布了新的文献求助10
5分钟前
英姑应助季1采纳,获得10
5分钟前
5分钟前
LULU发布了新的文献求助10
5分钟前
5分钟前
Georgechan完成签到,获得积分10
6分钟前
6分钟前
二三发布了新的文献求助10
6分钟前
上官若男应助雪巧采纳,获得10
6分钟前
雪巧完成签到,获得积分10
7分钟前
7分钟前
雪巧发布了新的文献求助10
7分钟前
研友_VZG7GZ应助雪巧采纳,获得10
7分钟前
9分钟前
kalala发布了新的文献求助10
9分钟前
9分钟前
希望天下0贩的0应助kalala采纳,获得10
9分钟前
高分求助中
Sustainability in Tides Chemistry 2000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Essentials of thematic analysis 700
A Dissection Guide & Atlas to the Rabbit 600
Very-high-order BVD Schemes Using β-variable THINC Method 568
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3126107
求助须知:如何正确求助?哪些是违规求助? 2776278
关于积分的说明 7729751
捐赠科研通 2431767
什么是DOI,文献DOI怎么找? 1292236
科研通“疑难数据库(出版商)”最低求助积分说明 622609
版权声明 600392