Real-time discrimination of contamination source composed of multiple pollutants in surface water based on deep learning and UV–Vis spectral abundance estimation methodology

污染 污染物 环境科学 水污染 鉴定(生物学) 污水 地表水 计算机科学 环境工程 环境化学 化学 生态学 植物 有机化学 生物
作者
Qingbo Li,Rui Liu,Zhiqi Bi
出处
期刊:Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy [Elsevier]
卷期号:307: 123635-123635 被引量:3
标识
DOI:10.1016/j.saa.2023.123635
摘要

Water resources are one of the most important strategic resources for human survival and development. At present, surface water pollution incidents occur frequently, most of which are caused by enterprises' over-discharge, stolen discharge, and other activities to evade supervision. Automatic and rapid determination of pollution source types is conducive to further targeting pollution-causing enterprises and realizing scientific accountability in law enforcement. The existing method mainly adopts the pattern recognition method for pollution discrimination, which is only suitable for the situation of a single source of pollutant, and cannot identify the pollution for multiple pollution sources mixed surface water. To solve the problem of identification of mixed chemical pollutants in surface water pollution sources and identification of simultaneous emission of multiple pollution sources, a total pollution source analysis method based on spectral unmixing is proposed in this paper, which is a radial basis bilinear mixing model automatic encoder algorithm. The unsupervised autoencoder neural network method was used to solve the proportion of water pollution types by using the spectral database of water pollution sources to realize the identification function of water pollution types and determine the types of pollutant discharge enterprises. In this paper, surface water was collected as experimental samples, mixed with domestic sewage, industrial sewage, agricultural sewage, and other pollution sources, and simulated experiments were carried out to estimate the type and proportion of water pollution. Experimental results show that the detection accuracy of the proposed algorithm is significantly improved compared with the traditional algorithm. Among them, the accuracy of judging whether there is industrial sewage in the mixed experiment of three types of pollution is as high as 95.2%. This method provides an important basis for pollution source investigation and accountability.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
大个应助乐观的幼珊采纳,获得10
1秒前
1秒前
1秒前
1秒前
顺顺完成签到,获得积分10
3秒前
3秒前
小马甲应助a1oft采纳,获得10
3秒前
Keke完成签到,获得积分10
3秒前
4秒前
自然秋柳发布了新的文献求助10
4秒前
candy6663339完成签到,获得积分10
4秒前
weiwei完成签到,获得积分10
4秒前
大个应助苗条的山晴采纳,获得10
5秒前
努力发一区完成签到 ,获得积分0
5秒前
蒋时晏应助恶恶么v采纳,获得30
5秒前
6秒前
6秒前
gennp完成签到,获得积分10
6秒前
gg完成签到,获得积分10
6秒前
1111发布了新的文献求助10
6秒前
情怀应助wjh采纳,获得10
7秒前
7秒前
Hey关闭了Hey文献求助
7秒前
学渣向下完成签到,获得积分10
7秒前
咚咚咚发布了新的文献求助10
7秒前
8秒前
willen完成签到,获得积分10
8秒前
8秒前
奇怪的柒完成签到,获得积分10
9秒前
9秒前
9秒前
10秒前
文静的枫叶完成签到,获得积分10
10秒前
科目三应助神麒小雪采纳,获得10
10秒前
zzznznnn发布了新的文献求助10
11秒前
pbf发布了新的文献求助20
11秒前
科研通AI5应助有风采纳,获得10
12秒前
Lin完成签到,获得积分10
12秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527699
求助须知:如何正确求助?哪些是违规求助? 3107752
关于积分的说明 9286499
捐赠科研通 2805513
什么是DOI,文献DOI怎么找? 1539954
邀请新用户注册赠送积分活动 716878
科研通“疑难数据库(出版商)”最低求助积分说明 709759