亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Real-time discrimination of contamination source composed of multiple pollutants in surface water based on deep learning and UV–Vis spectral abundance estimation methodology

污染 污染物 环境科学 水污染 鉴定(生物学) 污水 地表水 计算机科学 环境工程 环境化学 化学 生态学 植物 有机化学 生物
作者
Qingbo Li,Rui Liu,Zhiqi Bi
出处
期刊:Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy [Elsevier]
卷期号:307: 123635-123635 被引量:3
标识
DOI:10.1016/j.saa.2023.123635
摘要

Water resources are one of the most important strategic resources for human survival and development. At present, surface water pollution incidents occur frequently, most of which are caused by enterprises' over-discharge, stolen discharge, and other activities to evade supervision. Automatic and rapid determination of pollution source types is conducive to further targeting pollution-causing enterprises and realizing scientific accountability in law enforcement. The existing method mainly adopts the pattern recognition method for pollution discrimination, which is only suitable for the situation of a single source of pollutant, and cannot identify the pollution for multiple pollution sources mixed surface water. To solve the problem of identification of mixed chemical pollutants in surface water pollution sources and identification of simultaneous emission of multiple pollution sources, a total pollution source analysis method based on spectral unmixing is proposed in this paper, which is a radial basis bilinear mixing model automatic encoder algorithm. The unsupervised autoencoder neural network method was used to solve the proportion of water pollution types by using the spectral database of water pollution sources to realize the identification function of water pollution types and determine the types of pollutant discharge enterprises. In this paper, surface water was collected as experimental samples, mixed with domestic sewage, industrial sewage, agricultural sewage, and other pollution sources, and simulated experiments were carried out to estimate the type and proportion of water pollution. Experimental results show that the detection accuracy of the proposed algorithm is significantly improved compared with the traditional algorithm. Among them, the accuracy of judging whether there is industrial sewage in the mixed experiment of three types of pollution is as high as 95.2%. This method provides an important basis for pollution source investigation and accountability.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
bkagyin应助吴可之采纳,获得10
7秒前
41秒前
完美世界应助科研通管家采纳,获得10
1分钟前
脑洞疼应助科研通管家采纳,获得10
1分钟前
Lucas应助科研通管家采纳,获得10
3分钟前
3分钟前
3分钟前
wtsow完成签到,获得积分0
4分钟前
Jenlisa完成签到 ,获得积分10
4分钟前
烨枫晨曦完成签到,获得积分10
5分钟前
小二郎应助科研通管家采纳,获得10
5分钟前
下雨天完成签到 ,获得积分10
5分钟前
科目三应助一杯美式采纳,获得10
6分钟前
6分钟前
一杯美式发布了新的文献求助10
6分钟前
老王家的二姑娘完成签到 ,获得积分10
6分钟前
葱饼完成签到 ,获得积分10
8分钟前
慕青应助科研通管家采纳,获得10
11分钟前
完美世界应助泓凯骏采纳,获得10
11分钟前
11分钟前
11分钟前
泓凯骏发布了新的文献求助10
11分钟前
igaku发布了新的文献求助10
11分钟前
igaku完成签到,获得积分10
11分钟前
12分钟前
吴可之发布了新的文献求助10
12分钟前
吴可之完成签到,获得积分10
12分钟前
情怀应助一杯美式采纳,获得10
12分钟前
13分钟前
一杯美式发布了新的文献求助10
13分钟前
传奇3应助科研通管家采纳,获得10
13分钟前
一杯美式完成签到,获得积分20
13分钟前
13分钟前
隐形问萍发布了新的文献求助10
13分钟前
隐形问萍完成签到,获得积分10
13分钟前
wanci应助科研通管家采纳,获得10
15分钟前
华仔应助机灵自中采纳,获得10
15分钟前
背后访风完成签到 ,获得积分10
16分钟前
LUMO完成签到 ,获得积分10
16分钟前
Tei完成签到,获得积分10
17分钟前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Le dégorgement réflexe des Acridiens 800
Defense against predation 800
Very-high-order BVD Schemes Using β-variable THINC Method 568
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3137011
求助须知:如何正确求助?哪些是违规求助? 2787960
关于积分的说明 7784179
捐赠科研通 2444060
什么是DOI,文献DOI怎么找? 1299705
科研通“疑难数据库(出版商)”最低求助积分说明 625497
版权声明 600997