Label-guided graph contrastive learning for semi-supervised node classification

计算机科学 图形 节点(物理) 人工智能 嵌入 聚类系数 半监督学习 图嵌入 机器学习 理论计算机科学 聚类分析 结构工程 工程类
作者
Meixin Peng,Xin Juan,Zhanshan Li
出处
期刊:Expert Systems With Applications [Elsevier]
卷期号:239: 122385-122385 被引量:9
标识
DOI:10.1016/j.eswa.2023.122385
摘要

Semi-supervised node classification is a task of predicting the labels of unlabeled nodes using limited labeled nodes and numerous unlabeled nodes. Recently, Graph Neural Networks (GNNs) have achieved remarkable success in this task. However, GNNs typically have shallow architectures and only consider labeled nodes and their low-order neighbors during training. As a result, the supervision signals from the massive unlabeled nodes remain underutilized. To address this limitation, graph contrastive learning has been applied in semi-supervised node classification, which pulls together positive nodes and pushes away negative nodes in the embedding space. Nevertheless, existing node-level contrastive learning methods usually sample the same node from two augmented views as positive nodes and all different nodes as negative nodes. Consequently, many semantically similar nodes are not sampled as positive nodes but are mistakenly sampled as negative nodes. To tackle this issue, we propose a novel Label-guided Graph Contrastive Learning (LGGCL) training algorithm for semi-supervised node classification. Specifically, we first propose a Label-guided Graph Contrastive Learning framework as the basis of LGGCL training algorithm. Then we incorporate a self-checking mechanism based on deep clustering to ensure the authenticity of the sampled positive nodes. Moreover, we design a reweighting strategy based on the probability distribution of the anchor node to enhance the effect of hard negative nodes. Finally, experimental results on various graph benchmarks demonstrate the superiority of our LGGCL.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
优秀冬天完成签到 ,获得积分10
1秒前
anyang发布了新的文献求助10
1秒前
111发布了新的文献求助10
1秒前
1秒前
1秒前
缓慢的博完成签到,获得积分10
1秒前
完美凝竹完成签到,获得积分10
1秒前
感动水杯发布了新的文献求助10
2秒前
2秒前
2秒前
3秒前
Liu完成签到,获得积分10
3秒前
魁梧的海秋应助鲤黎黎采纳,获得10
3秒前
cloud完成签到 ,获得积分10
3秒前
huang完成签到,获得积分10
4秒前
weirdo发布了新的文献求助10
4秒前
5秒前
Reuben发布了新的文献求助10
5秒前
大淘发布了新的文献求助10
5秒前
5秒前
感谢各位@!完成签到,获得积分10
5秒前
helong完成签到,获得积分10
5秒前
鳗鱼千雁完成签到,获得积分10
6秒前
6秒前
Sunxf完成签到,获得积分10
7秒前
小猫恰饭完成签到,获得积分10
8秒前
深情安青应助聪明凌丝采纳,获得10
8秒前
明亮依琴发布了新的文献求助10
9秒前
TTXS发布了新的文献求助10
9秒前
英姑应助肉哥采纳,获得10
9秒前
10秒前
11秒前
北杨发布了新的文献求助10
11秒前
11秒前
WJY发布了新的文献求助10
12秒前
可爱的函函应助秋天采纳,获得10
13秒前
英姑应助Lsy采纳,获得10
14秒前
小马甲应助凯睿采纳,获得10
14秒前
木草发布了新的文献求助10
14秒前
高分求助中
The late Devonian Standard Conodont Zonation 2000
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 2000
The Lali Section: An Excellent Reference Section for Upper - Devonian in South China 1500
Very-high-order BVD Schemes Using β-variable THINC Method 870
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 800
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
Fundamentals of Dispersed Multiphase Flows 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3253737
求助须知:如何正确求助?哪些是违规求助? 2896209
关于积分的说明 8290919
捐赠科研通 2564961
什么是DOI,文献DOI怎么找? 1392730
科研通“疑难数据库(出版商)”最低求助积分说明 652258
邀请新用户注册赠送积分活动 629651