已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Label-guided graph contrastive learning for semi-supervised node classification

计算机科学 图形 节点(物理) 人工智能 嵌入 聚类系数 半监督学习 图嵌入 机器学习 理论计算机科学 聚类分析 结构工程 工程类
作者
Meixin Peng,Xin Juan,Zhanshan Li
出处
期刊:Expert Systems With Applications [Elsevier BV]
卷期号:239: 122385-122385 被引量:9
标识
DOI:10.1016/j.eswa.2023.122385
摘要

Semi-supervised node classification is a task of predicting the labels of unlabeled nodes using limited labeled nodes and numerous unlabeled nodes. Recently, Graph Neural Networks (GNNs) have achieved remarkable success in this task. However, GNNs typically have shallow architectures and only consider labeled nodes and their low-order neighbors during training. As a result, the supervision signals from the massive unlabeled nodes remain underutilized. To address this limitation, graph contrastive learning has been applied in semi-supervised node classification, which pulls together positive nodes and pushes away negative nodes in the embedding space. Nevertheless, existing node-level contrastive learning methods usually sample the same node from two augmented views as positive nodes and all different nodes as negative nodes. Consequently, many semantically similar nodes are not sampled as positive nodes but are mistakenly sampled as negative nodes. To tackle this issue, we propose a novel Label-guided Graph Contrastive Learning (LGGCL) training algorithm for semi-supervised node classification. Specifically, we first propose a Label-guided Graph Contrastive Learning framework as the basis of LGGCL training algorithm. Then we incorporate a self-checking mechanism based on deep clustering to ensure the authenticity of the sampled positive nodes. Moreover, we design a reweighting strategy based on the probability distribution of the anchor node to enhance the effect of hard negative nodes. Finally, experimental results on various graph benchmarks demonstrate the superiority of our LGGCL.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
blingbling发布了新的文献求助10
1秒前
1秒前
慕青应助萤lueluelue采纳,获得10
3秒前
3秒前
自由的无色完成签到 ,获得积分10
4秒前
Fury发布了新的文献求助10
7秒前
冷傲千秋完成签到 ,获得积分10
9秒前
量子星尘发布了新的文献求助10
9秒前
徐小发布了新的文献求助20
9秒前
kalisu24完成签到,获得积分10
12秒前
麻辣鱼头完成签到,获得积分20
19秒前
silsotiscolor完成签到,获得积分10
19秒前
Sandy应助徐小采纳,获得40
22秒前
汉堡包应助徐小采纳,获得10
22秒前
Singularity应助韩凡采纳,获得10
22秒前
郭京京完成签到 ,获得积分10
23秒前
24秒前
28秒前
医学僧丿道阻且长完成签到,获得积分10
28秒前
戴哈哈发布了新的文献求助10
31秒前
31秒前
orixero应助戴哈哈采纳,获得10
35秒前
35秒前
SGOM完成签到,获得积分10
35秒前
萤lueluelue发布了新的文献求助10
39秒前
40秒前
你求我一下完成签到,获得积分10
41秒前
41秒前
麻辣鱼头发布了新的文献求助10
45秒前
依依完成签到 ,获得积分10
47秒前
乐乐应助Fury采纳,获得10
48秒前
49秒前
哈哈完成签到 ,获得积分10
50秒前
mumufan完成签到,获得积分10
51秒前
54秒前
58秒前
大白完成签到 ,获得积分10
58秒前
千纸鹤完成签到 ,获得积分10
58秒前
风清扬发布了新的文献求助10
59秒前
聪慧不二完成签到 ,获得积分10
1分钟前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3956962
求助须知:如何正确求助?哪些是违规求助? 3503011
关于积分的说明 11111001
捐赠科研通 3234007
什么是DOI,文献DOI怎么找? 1787710
邀请新用户注册赠送积分活动 870713
科研通“疑难数据库(出版商)”最低求助积分说明 802234