催化作用
氧化还原
材料科学
多硫化物
纳米片
吸附
硫黄
锂(药物)
化学工程
无机化学
纳米技术
化学
电极
有机化学
电解质
医学
物理化学
内分泌学
工程类
冶金
作者
Xuechao Jiao,Jun Hu,Yinze Zuo,Qi Jing,Wei Yan,Jiujun Zhang
出处
期刊:Nano Energy
[Elsevier]
日期:2023-11-08
卷期号:119: 109078-109078
被引量:22
标识
DOI:10.1016/j.nanoen.2023.109078
摘要
The "shuttle effect" of soluble lithium polysulfides (LiPSs) in lithium-sulfur (Li-S) batteries can lead to sluggish kinetics of sulfur redox reactions and rapid capacity degradation, significantly limiting the practical application of Li-S batteries on a large scale. Herein, the cascade catalysis is achieved based on a self-recovery catalyst with multiple catalytic centers through a ZnIn2S4-In2O3-ZnIn2S4 sandwich-like structure to realize the tandem redox of S8 to Li2S. Specifically, the outer ZnIn2S4 nanosheet network can preferentially adsorb S8, and the middle In2O3 acts as an adsorption mediator to ensure the adsorption and conversion of S8 to long-chain Li2S6/Li2S4, and then the inner ZnIn2S4 can further catalyze the conversions from long-chain Li2S4 to short-chain Li2S2/Li2S. Reversibly, the ZnIn2S4 is better in decreasing the energy barrier of Li2S dissolution, and further converting it into elemental sulfur (S8). During this process, the In/O and In/Zn active sites are re-exposed by alternating catalytic mode to achieve the self-recovery of active site, thereby enhancing long-term catalytic activity. This work demonstrates that cascade catalysis can be achieved by self-recovery catalysts with multiple catalytic centers for LiPSs, providing novel insights into the design of multi-functional catalysts to rationally regulate LiPSs' redox reactions
科研通智能强力驱动
Strongly Powered by AbleSci AI