ODQN-Net: Optimized Deep Q Neural Networks for Disease Prediction Through Tongue Image Analysis Using Remora Optimization Algorithm

人工智能 计算机科学 人工神经网络 模式识别(心理学) 弹性网正则化 舌头 集合(抽象数据类型) 图像(数学) 机器学习 图像处理 特征选择 医学 病理 程序设计语言
作者
S. V. N. Sreenivasu,Priyadarsan Patra,Vasujadevi Midasala,G.S.N. Murthy,Krishna Chaitanya Janapati,Jagdish Kumar,Pravesh Kumar
出处
期刊:Big data [Mary Ann Liebert, Inc.]
卷期号:11 (6): 452-465
标识
DOI:10.1089/big.2023.0014
摘要

Tongue analysis plays the major role in disease type prediction and classification according to Indian ayurvedic medicine. Traditionally, there is a manual inspection of tongue image by the expert ayurvedic doctor to identify or predict the disease. However, this is time-consuming and even imprecise. Due to the advancements in recent machine learning models, several researchers addressed the disease prediction from tongue image analysis. However, they have failed to provide enough accuracy. In addition, multiclass disease classification with enhanced accuracy is still a challenging task. Therefore, this article focuses on the development of optimized deep q-neural network (DQNN) for disease identification and classification from tongue images, hereafter referred as ODQN-Net. Initially, the multiscale retinex approach is introduced for enhancing the quality of tongue images, which also acts as a noise removal technique. In addition, a local ternary pattern is used to extract the disease-specific and disease-dependent features based on color analysis. Then, the best features are extracted from the available features set using the natural inspired Remora optimization algorithm with reduced computational time. Finally, the DQNN model is used to classify the type of diseases from these pretrained features. The obtained simulation performance on tongue imaging data set proved that the proposed ODQN-Net resulted in superior performance compared with state-of-the-art approaches with 99.17% of accuracy and 99.75% and 99.84% of F1-score and Mathew's correlation coefficient, respectively.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
上官若男应助开花开花采纳,获得10
1秒前
2秒前
liujizhuo发布了新的文献求助10
2秒前
杨冰发布了新的文献求助10
6秒前
小小鱼完成签到,获得积分10
8秒前
Zed发布了新的文献求助10
9秒前
imomoe完成签到,获得积分0
10秒前
JAsoli发布了新的文献求助10
10秒前
12340055d完成签到,获得积分20
11秒前
茯苓发布了新的文献求助10
12秒前
曼波完成签到,获得积分10
12秒前
gh完成签到,获得积分10
15秒前
南宫丽完成签到 ,获得积分10
16秒前
田様应助静静采纳,获得10
17秒前
优雅的母鸡完成签到,获得积分10
17秒前
18秒前
gh发布了新的文献求助10
18秒前
liujizhuo完成签到,获得积分20
20秒前
20秒前
21秒前
田様应助shinn采纳,获得10
21秒前
齐俞如完成签到,获得积分10
22秒前
LIU发布了新的文献求助50
22秒前
23秒前
23秒前
VDV完成签到,获得积分10
24秒前
25秒前
啃猫爪发布了新的文献求助10
27秒前
28秒前
28秒前
30秒前
30秒前
30秒前
今后应助JAsoli采纳,获得10
31秒前
rd完成签到 ,获得积分10
32秒前
32秒前
苏蔚完成签到,获得积分10
33秒前
shinn发布了新的文献求助10
34秒前
安居宝发布了新的文献求助10
36秒前
pl就是你发布了新的文献求助10
36秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 600
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3967219
求助须知:如何正确求助?哪些是违规求助? 3512559
关于积分的说明 11164121
捐赠科研通 3247452
什么是DOI,文献DOI怎么找? 1793849
邀请新用户注册赠送积分活动 874729
科研通“疑难数据库(出版商)”最低求助积分说明 804494