ODQN-Net: Optimized Deep Q Neural Networks for Disease Prediction Through Tongue Image Analysis Using Remora Optimization Algorithm

人工智能 计算机科学 人工神经网络 模式识别(心理学) 弹性网正则化 舌头 集合(抽象数据类型) 图像(数学) 机器学习 图像处理 特征选择 医学 病理 程序设计语言
作者
S. V. N. Sreenivasu,Priyadarsan Patra,Vasujadevi Midasala,G.S.N. Murthy,Krishna Chaitanya Janapati,Jagdish Kumar,Pravesh Kumar
出处
期刊:Big data [Mary Ann Liebert]
卷期号:11 (6): 452-465
标识
DOI:10.1089/big.2023.0014
摘要

Tongue analysis plays the major role in disease type prediction and classification according to Indian ayurvedic medicine. Traditionally, there is a manual inspection of tongue image by the expert ayurvedic doctor to identify or predict the disease. However, this is time-consuming and even imprecise. Due to the advancements in recent machine learning models, several researchers addressed the disease prediction from tongue image analysis. However, they have failed to provide enough accuracy. In addition, multiclass disease classification with enhanced accuracy is still a challenging task. Therefore, this article focuses on the development of optimized deep q-neural network (DQNN) for disease identification and classification from tongue images, hereafter referred as ODQN-Net. Initially, the multiscale retinex approach is introduced for enhancing the quality of tongue images, which also acts as a noise removal technique. In addition, a local ternary pattern is used to extract the disease-specific and disease-dependent features based on color analysis. Then, the best features are extracted from the available features set using the natural inspired Remora optimization algorithm with reduced computational time. Finally, the DQNN model is used to classify the type of diseases from these pretrained features. The obtained simulation performance on tongue imaging data set proved that the proposed ODQN-Net resulted in superior performance compared with state-of-the-art approaches with 99.17% of accuracy and 99.75% and 99.84% of F1-score and Mathew's correlation coefficient, respectively.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
LL发布了新的文献求助20
刚刚
刚刚
刚刚
澄碧千顷完成签到 ,获得积分10
刚刚
泡泡儿发布了新的文献求助10
1秒前
甜甜醉波完成签到,获得积分10
2秒前
阮人雄完成签到,获得积分10
3秒前
3秒前
雪山飞龙发布了新的文献求助10
3秒前
renzhiqiang完成签到,获得积分10
3秒前
调研昵称发布了新的文献求助10
3秒前
ma发布了新的文献求助10
4秒前
4秒前
iorpi完成签到,获得积分10
4秒前
4秒前
hh发布了新的文献求助10
4秒前
Kretschmann完成签到,获得积分0
4秒前
科研通AI2S应助双眸若星辰采纳,获得10
4秒前
樨2009完成签到,获得积分10
4秒前
zoe发布了新的文献求助10
5秒前
急急急完成签到,获得积分10
6秒前
6秒前
欢呼冬瓜完成签到 ,获得积分10
7秒前
yxl要顺利毕业_发6篇C完成签到,获得积分10
7秒前
潘宋完成签到,获得积分10
7秒前
airui发布了新的文献求助10
7秒前
儒雅的寄翠完成签到,获得积分10
7秒前
yyyyyyf应助chen采纳,获得10
7秒前
8秒前
南北完成签到,获得积分10
8秒前
Azur1完成签到 ,获得积分10
8秒前
yyymmma完成签到,获得积分10
8秒前
InfoNinja应助Kretschmann采纳,获得50
9秒前
Liber完成签到,获得积分10
9秒前
剥皮巧克力完成签到,获得积分10
9秒前
王小明发布了新的文献求助10
10秒前
jiwn完成签到,获得积分10
10秒前
Dr.c完成签到,获得积分10
10秒前
南北发布了新的文献求助10
11秒前
Ava应助LL采纳,获得10
11秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Foreign Policy of the French Second Empire: A Bibliography 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3147351
求助须知:如何正确求助?哪些是违规求助? 2798580
关于积分的说明 7829767
捐赠科研通 2455324
什么是DOI,文献DOI怎么找? 1306666
科研通“疑难数据库(出版商)”最低求助积分说明 627883
版权声明 601567