A three-stage eccDNA based molecular profiling significantly improves the identification, prognosis assessment and recurrence prediction accuracy in patients with glioma

可解释性 胶质瘤 肿瘤科 胶质母细胞瘤 医学 机器学习 阶段(地层学) 内科学 人工智能 计算机科学 癌症研究 生物 古生物学
作者
Ze‐Sheng Li,Wei Wang,Hao Liang,Ying Li,Zhenyu Zhang,Lei Han
出处
期刊:Cancer Letters [Elsevier]
卷期号:574: 216369-216369 被引量:5
标识
DOI:10.1016/j.canlet.2023.216369
摘要

Glioblastoma (GBM) progression is influenced by intratumoral heterogeneity. Emerging evidence has emphasized the pivotal role of extrachromosomal circular DNA (eccDNA) in accelerating tumor heterogeneity, particularly in GBM. However, the eccDNA landscape of GBM has not yet been elucidated. In this study, we first identified the eccDNA profiles in GBM and adjacent tissues using circle- and RNA-sequencing data from the same samples. A three-stage model was established based on eccDNA-carried genes that exhibited consistent upregulation and downregulation trends at the mRNA level. Combinations of machine learning algorithms and stacked ensemble models were used to improve the performance and robustness of the three-stage model. In stage 1, a total of 113 combinations of machine learning algorithms were constructed and validated in multiple external cohorts to accurately distinguish between low-grade glioma (LGG) and GBM in patients with glioma. The model with the highest area under the curve (AUC) across all cohorts was selected for interpretability analysis. In stage 2, a total of 101 combinations of machine learning algorithms were established and validated for prognostic prediction in patients with glioma. This prognostic model performed well in multiple glioma cohorts. Recurrent GBM is invariably associated with aggressive and refractory disease. Therefore, accurate prediction of recurrence risk is crucial for developing individualized treatment strategies, monitoring patient status, and improving clinical management. In stage 3, a large-scale GBM cohort (including primary and recurrent GBM samples) was used to fit the GBM recurrence prediction model. Multiple machine learning and stacked ensemble models were fitted to select the model with the best performance. Finally, a web tool was developed to facilitate the clinical application of the three-stage model.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
lk65734发布了新的文献求助10
刚刚
freshman3005发布了新的文献求助30
刚刚
1秒前
2秒前
谷雨发布了新的文献求助10
2秒前
3秒前
3秒前
Wasch发布了新的文献求助20
4秒前
4秒前
四眼骷髅完成签到,获得积分10
4秒前
Tantantan完成签到,获得积分10
5秒前
舒适小馒头完成签到,获得积分10
5秒前
小芙爱雪碧完成签到 ,获得积分10
6秒前
沉静幻天完成签到,获得积分10
7秒前
7秒前
junjie完成签到,获得积分10
7秒前
8秒前
lk65734完成签到,获得积分10
8秒前
四眼骷髅发布了新的文献求助10
9秒前
景自端发布了新的文献求助10
10秒前
番薯发布了新的文献求助10
10秒前
发条橙发布了新的文献求助10
11秒前
苹果行天完成签到,获得积分20
11秒前
机灵听蓉发布了新的文献求助10
11秒前
11秒前
ding应助愉快书琴采纳,获得10
11秒前
12秒前
weilong完成签到,获得积分10
12秒前
12秒前
1点点完成签到,获得积分10
12秒前
ln177完成签到,获得积分10
13秒前
11完成签到,获得积分10
13秒前
13秒前
13秒前
坦率秋玲完成签到 ,获得积分10
13秒前
15秒前
李锐发布了新的文献求助10
15秒前
Desamin发布了新的文献求助10
15秒前
Wasch完成签到,获得积分10
16秒前
一如果一完成签到,获得积分10
17秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
A technique for the measurement of attitudes 500
A new approach of magnetic circular dichroism to the electronic state analysis of intact photosynthetic pigments 500
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3148736
求助须知:如何正确求助?哪些是违规求助? 2799755
关于积分的说明 7836820
捐赠科研通 2457225
什么是DOI,文献DOI怎么找? 1307810
科研通“疑难数据库(出版商)”最低求助积分说明 628276
版权声明 601663