A three-stage eccDNA based molecular profiling significantly improves the identification, prognosis assessment and recurrence prediction accuracy in patients with glioma

可解释性 胶质瘤 肿瘤科 胶质母细胞瘤 医学 机器学习 阶段(地层学) 内科学 替莫唑胺 人工智能 计算机科学 癌症研究 生物 古生物学
作者
Ze‐Sheng Li,Wei Wang,Hao Liang,Ying Li,Zhenyu Zhang,Lei Han
出处
期刊:Cancer Letters [Elsevier BV]
卷期号:574: 216369-216369 被引量:11
标识
DOI:10.1016/j.canlet.2023.216369
摘要

Glioblastoma (GBM) progression is influenced by intratumoral heterogeneity. Emerging evidence has emphasized the pivotal role of extrachromosomal circular DNA (eccDNA) in accelerating tumor heterogeneity, particularly in GBM. However, the eccDNA landscape of GBM has not yet been elucidated. In this study, we first identified the eccDNA profiles in GBM and adjacent tissues using circle- and RNA-sequencing data from the same samples. A three-stage model was established based on eccDNA-carried genes that exhibited consistent upregulation and downregulation trends at the mRNA level. Combinations of machine learning algorithms and stacked ensemble models were used to improve the performance and robustness of the three-stage model. In stage 1, a total of 113 combinations of machine learning algorithms were constructed and validated in multiple external cohorts to accurately distinguish between low-grade glioma (LGG) and GBM in patients with glioma. The model with the highest area under the curve (AUC) across all cohorts was selected for interpretability analysis. In stage 2, a total of 101 combinations of machine learning algorithms were established and validated for prognostic prediction in patients with glioma. This prognostic model performed well in multiple glioma cohorts. Recurrent GBM is invariably associated with aggressive and refractory disease. Therefore, accurate prediction of recurrence risk is crucial for developing individualized treatment strategies, monitoring patient status, and improving clinical management. In stage 3, a large-scale GBM cohort (including primary and recurrent GBM samples) was used to fit the GBM recurrence prediction model. Multiple machine learning and stacked ensemble models were fitted to select the model with the best performance. Finally, a web tool was developed to facilitate the clinical application of the three-stage model.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
1秒前
yaruyou发布了新的文献求助10
1秒前
2秒前
2秒前
标致博完成签到,获得积分10
3秒前
3秒前
fd163c应助橘子采纳,获得10
3秒前
4秒前
NexusExplorer应助hhhhhh采纳,获得10
4秒前
马瑞轩发布了新的文献求助10
4秒前
燕十三发布了新的文献求助10
5秒前
木木应助Astralis采纳,获得10
5秒前
5秒前
橙汁完成签到,获得积分20
6秒前
6秒前
万能图书馆应助跳跃采纳,获得10
6秒前
6秒前
7秒前
skittles发布了新的文献求助10
7秒前
桐桐应助pan采纳,获得10
7秒前
8秒前
周十八发布了新的文献求助10
8秒前
情怀应助DZ采纳,获得10
8秒前
9秒前
xW12123发布了新的文献求助10
9秒前
9秒前
LL完成签到,获得积分20
9秒前
9秒前
10秒前
青青子衿发布了新的文献求助10
10秒前
科研通AI5应助暴躁的梦露采纳,获得10
11秒前
thz发布了新的文献求助10
12秒前
12秒前
张三发布了新的文献求助10
12秒前
12秒前
12秒前
打打应助Clash采纳,获得10
13秒前
13秒前
高分求助中
Picture Books with Same-sex Parented Families: Unintentional Censorship 1000
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 310
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3979242
求助须知:如何正确求助?哪些是违规求助? 3523187
关于积分的说明 11216570
捐赠科研通 3260615
什么是DOI,文献DOI怎么找? 1800151
邀请新用户注册赠送积分活动 878854
科研通“疑难数据库(出版商)”最低求助积分说明 807099