3D multi-modality Transformer-GAN for high-quality PET reconstruction

计算机科学 人工智能 鉴别器 计算机视觉 迭代重建 编码器 正电子发射断层摄影术 模式识别(心理学) 特征(语言学) 图像质量 模态(人机交互) 体素 核医学 图像(数学) 医学 电信 语言学 哲学 探测器 操作系统
作者
Yan Wang,Yanmei Luo,Chen Zu,Bo Zhan,Zhengyang Jiao,Xi Wu,Jiliu Zhou,Dinggang Shen,Luping Zhou
出处
期刊:Medical Image Analysis [Elsevier]
卷期号:91: 102983-102983 被引量:18
标识
DOI:10.1016/j.media.2023.102983
摘要

Positron emission tomography (PET) scans can reveal abnormal metabolic activities of cells and provide favorable information for clinical patient diagnosis. Generally, standard-dose PET (SPET) images contain more diagnostic information than low-dose PET (LPET) images but higher-dose scans can also bring higher potential radiation risks. To reduce the radiation risk while acquiring high-quality PET images, in this paper, we propose a 3D multi-modality edge-aware Transformer-GAN for high-quality SPET reconstruction using the corresponding LPET images and T1 acquisitions from magnetic resonance imaging (T1-MRI). Specifically, to fully excavate the metabolic distributions in LPET and anatomical structural information in T1-MRI, we first use two separate CNN-based encoders to extract local spatial features from the two modalities, respectively, and design a multimodal feature integration module to effectively integrate the two kinds of features given the diverse contributions of features at different locations. Then, as CNNs can describe local spatial information well but have difficulty in modeling long-range dependencies in images, we further apply a Transformer-based encoder to extract global semantic information in the input images and use a CNN decoder to transform the encoded features into SPET images. Finally, a patch-based discriminator is applied to ensure the similarity of patch-wise data distribution between the reconstructed and real images. Considering the importance of edge information in anatomical structures for clinical disease diagnosis, besides voxel-level estimation error and adversarial loss, we also introduce an edge-aware loss to retain more edge detail information in the reconstructed SPET images. Experiments on the phantom dataset and clinical dataset validate that our proposed method can effectively reconstruct high-quality SPET images and outperform current state-of-the-art methods in terms of qualitative and quantitative metrics.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
香蕉觅云应助南枝采纳,获得10
1秒前
1秒前
陈末应助梦霖采纳,获得10
2秒前
俊杰发布了新的文献求助10
2秒前
逍遥游发布了新的文献求助10
4秒前
4秒前
小火车EL完成签到,获得积分10
5秒前
JIASHOUSHOU完成签到,获得积分10
6秒前
6秒前
我是老大应助干净冰露采纳,获得10
6秒前
北地风情应助皮卡丘采纳,获得20
6秒前
Haoziyu发布了新的文献求助30
7秒前
FG关闭了FG文献求助
8秒前
孙伟健发布了新的文献求助10
8秒前
刘富宇完成签到 ,获得积分10
8秒前
量子星尘发布了新的文献求助10
9秒前
9秒前
9秒前
单身的青柏完成签到 ,获得积分10
10秒前
annathd发布了新的文献求助10
10秒前
平常心发布了新的文献求助10
10秒前
11秒前
Wind发布了新的文献求助10
11秒前
端庄梦桃完成签到,获得积分10
12秒前
NexusExplorer应助Clover04采纳,获得10
12秒前
13秒前
nc发布了新的文献求助10
13秒前
所所应助111111采纳,获得10
13秒前
华仔应助ruirui采纳,获得30
13秒前
Haoziyu完成签到,获得积分20
14秒前
难过若枫完成签到,获得积分10
14秒前
南枝发布了新的文献求助10
14秒前
悦耳寒云完成签到,获得积分10
15秒前
16秒前
专注月亮发布了新的文献求助10
19秒前
19秒前
难过若枫发布了新的文献求助10
20秒前
20秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 1070
Alloy Phase Diagrams 1000
Introduction to Early Childhood Education 1000
2025-2031年中国兽用抗生素行业发展深度调研与未来趋势报告 1000
List of 1,091 Public Pension Profiles by Region 891
Historical Dictionary of British Intelligence (2014 / 2nd EDITION!) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5425184
求助须知:如何正确求助?哪些是违规求助? 4539282
关于积分的说明 14166597
捐赠科研通 4456440
什么是DOI,文献DOI怎么找? 2444204
邀请新用户注册赠送积分活动 1435246
关于科研通互助平台的介绍 1412568