3D multi-modality Transformer-GAN for high-quality PET reconstruction

计算机科学 人工智能 鉴别器 计算机视觉 迭代重建 编码器 正电子发射断层摄影术 模式识别(心理学) 特征(语言学) 图像质量 模态(人机交互) 体素 核医学 图像(数学) 医学 哲学 操作系统 探测器 电信 语言学
作者
Yan Wang,Yanmei Luo,Chen Zu,Bo Zhan,Zhengyang Jiao,Xi Wu,Jiliu Zhou,Dinggang Shen,Luping Zhou
出处
期刊:Medical Image Analysis [Elsevier BV]
卷期号:91: 102983-102983 被引量:13
标识
DOI:10.1016/j.media.2023.102983
摘要

Positron emission tomography (PET) scans can reveal abnormal metabolic activities of cells and provide favorable information for clinical patient diagnosis. Generally, standard-dose PET (SPET) images contain more diagnostic information than low-dose PET (LPET) images but higher-dose scans can also bring higher potential radiation risks. To reduce the radiation risk while acquiring high-quality PET images, in this paper, we propose a 3D multi-modality edge-aware Transformer-GAN for high-quality SPET reconstruction using the corresponding LPET images and T1 acquisitions from magnetic resonance imaging (T1-MRI). Specifically, to fully excavate the metabolic distributions in LPET and anatomical structural information in T1-MRI, we first use two separate CNN-based encoders to extract local spatial features from the two modalities, respectively, and design a multimodal feature integration module to effectively integrate the two kinds of features given the diverse contributions of features at different locations. Then, as CNNs can describe local spatial information well but have difficulty in modeling long-range dependencies in images, we further apply a Transformer-based encoder to extract global semantic information in the input images and use a CNN decoder to transform the encoded features into SPET images. Finally, a patch-based discriminator is applied to ensure the similarity of patch-wise data distribution between the reconstructed and real images. Considering the importance of edge information in anatomical structures for clinical disease diagnosis, besides voxel-level estimation error and adversarial loss, we also introduce an edge-aware loss to retain more edge detail information in the reconstructed SPET images. Experiments on the phantom dataset and clinical dataset validate that our proposed method can effectively reconstruct high-quality SPET images and outperform current state-of-the-art methods in terms of qualitative and quantitative metrics.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
还没想好完成签到,获得积分10
刚刚
高天雨完成签到 ,获得积分10
1秒前
幼稚园搞磕研完成签到,获得积分10
1秒前
1秒前
小飞侠来咯完成签到,获得积分10
1秒前
chenxu完成签到,获得积分10
1秒前
淡定碧玉完成签到 ,获得积分10
2秒前
2秒前
2秒前
xiaoruixue完成签到,获得积分10
2秒前
cheng完成签到,获得积分10
2秒前
kakaC完成签到,获得积分10
3秒前
xmhxpz完成签到,获得积分10
3秒前
乖猫要努力应助张兰采纳,获得10
3秒前
3秒前
dake完成签到,获得积分10
4秒前
cccc完成签到,获得积分10
5秒前
5秒前
江林林完成签到,获得积分10
6秒前
飞翔的秋秋完成签到,获得积分10
6秒前
杨怂怂发布了新的文献求助10
6秒前
田様应助坚定的可愁采纳,获得10
7秒前
ZW完成签到 ,获得积分10
7秒前
252525完成签到,获得积分10
7秒前
7秒前
JacobL发布了新的文献求助10
8秒前
tatai完成签到,获得积分10
9秒前
聪慧咖啡豆完成签到,获得积分10
10秒前
文献完成签到 ,获得积分10
12秒前
Rondab应助洋洋采纳,获得10
12秒前
文艺孱完成签到,获得积分10
12秒前
wang完成签到,获得积分10
13秒前
XiuruLi完成签到,获得积分10
14秒前
lilysmile001完成签到,获得积分10
14秒前
杨怂怂完成签到,获得积分10
14秒前
痴情的寒云完成签到 ,获得积分10
14秒前
爱科研的小胖子完成签到,获得积分10
14秒前
景代丝发布了新的文献求助10
14秒前
海猫食堂完成签到,获得积分10
15秒前
请输入昵称完成签到,获得积分10
15秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 600
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3968637
求助须知:如何正确求助?哪些是违规求助? 3513552
关于积分的说明 11168493
捐赠科研通 3248935
什么是DOI,文献DOI怎么找? 1794554
邀请新用户注册赠送积分活动 875188
科研通“疑难数据库(出版商)”最低求助积分说明 804691