Effect-Targeted Mapping of Potential Estrogenic Agonists and Antagonists in Wastewater via a Conformation-Specific Reporter-Mediated Biosensor

生物传感器 兴奋剂 化学 部分 敌手 雌激素受体 分析灵敏度 受体 药理学 组合化学 生物化学 立体化学 生物 医学 替代医学 病理 癌症 乳腺癌 遗传学
作者
Jisui Tan,Fangxu Li,Lanhua Liu,Jing Zhang,Ping Gui,Miao He,Xiaohong Zhou
出处
期刊:Environmental Science & Technology [American Chemical Society]
卷期号:57 (41): 15617-15626 被引量:4
标识
DOI:10.1021/acs.est.3c03223
摘要

Wastewater treatment plants (WWTPs) are regarded as the main sources of estrogens that reach the aquatic environment. Hence, continuous monitoring of potential estrogenic-active compounds by a biosensor is an appealing approach. However, existing biosensors cannot simultaneously distinguish and quantify estrogenic agonists and antagonists. To overcome the challenge, we developed an estrogen receptor-based biosensor that selectively screened estrogenic agonists and antagonists by introducing rationally designed agonist/antagonist conformation-specific reporters. The double functional conformation-specific reporters consist of a Cy5.5-labeled streptavidin moiety and a peptide moiety, serving as signal recognition and signal transduction elements. In addition, the conformation recognition mechanism was further validated at the molecular level through molecular docking. Based on the two-step "turn-off" strategy, the biosensor exhibited remarkable sensitivity, detecting 17β-estradiol-binding activity equivalent (E2-BAE) at 7 ng/L and 4-hydroxytamoxifen-binding activity equivalent (4-OHT-BAE) at 91 ng/L. To validate its practicality, the biosensor was employed in a case study involving wastewater samples from two full-scale WWTPs across different treatment stages to map their estrogenic agonist and antagonist binding activities. Comparison with the yeast two-hybrid bioassay showed a strong liner relationship (r2 = 0.991, p < 0.0001), indicating the excellent accuracy and reliability of this technology in real applications.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
安静的从安完成签到,获得积分10
刚刚
了了完成签到,获得积分10
刚刚
烟花应助phylicia采纳,获得10
1秒前
讲你ing发布了新的文献求助10
1秒前
2秒前
小西发布了新的文献求助30
2秒前
行不通完成签到,获得积分10
2秒前
小赟发布了新的文献求助20
3秒前
Ava应助爱学习采纳,获得10
3秒前
3秒前
wary发布了新的文献求助10
3秒前
橘子完成签到,获得积分10
4秒前
5秒前
5秒前
5秒前
了了发布了新的文献求助10
6秒前
6秒前
ZQY完成签到 ,获得积分10
6秒前
斯文败类应助正直亦旋采纳,获得10
8秒前
科研通AI5应助jijahui采纳,获得80
9秒前
Jenny应助背后的诺言采纳,获得10
9秒前
木木完成签到,获得积分10
9秒前
赤邪发布了新的文献求助10
9秒前
9秒前
keen完成签到 ,获得积分10
9秒前
et完成签到,获得积分10
10秒前
桂魄完成签到,获得积分10
10秒前
10秒前
11秒前
wang发布了新的文献求助200
12秒前
12秒前
12秒前
英姑应助snowdrift采纳,获得10
12秒前
12秒前
12秒前
jy完成签到 ,获得积分10
12秒前
NexusExplorer应助立马毕业采纳,获得10
13秒前
在水一方应助123采纳,获得10
14秒前
科目三应助白华苍松采纳,获得10
15秒前
通~发布了新的文献求助10
15秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527742
求助须知:如何正确求助?哪些是违规求助? 3107867
关于积分的说明 9286956
捐赠科研通 2805612
什么是DOI,文献DOI怎么找? 1540026
邀请新用户注册赠送积分活动 716884
科研通“疑难数据库(出版商)”最低求助积分说明 709762