LEO Satellite and UAVs Assisted Mobile Edge Computing for Tactical Ad-Hoc Network: A Game Theory Approach

移动边缘计算 计算机科学 服务器 计算卸载 分布式计算 边缘计算 计算机网络 斯塔克伯格竞赛 纳什均衡 子对策 潜在博弈 博弈论 节点(物理) GSM演进的增强数据速率 最佳反应 数学优化 电信 工程类 数理经济学 结构工程 经济 微观经济学 ε平衡 数学
作者
Xin Lin,Aijun Liu,Chen Han,Xiaohu Liang,Kegang Pan,Zhixiang Gao
出处
期刊:IEEE Internet of Things Journal [Institute of Electrical and Electronics Engineers]
卷期号:10 (23): 20560-20573 被引量:12
标识
DOI:10.1109/jiot.2023.3299950
摘要

As an emerging technology, mobile edge computing (MEC) network paradigm provides great computing potential for edge services, which has been widely applied in friendly city environment. However, there are still many challenges to deploy MEC technology in harsh tactical communication environment due to poor communication conditions, limited computational resources, and hostile malicious interference. Thus, this article investigates the computational resource pricing and task offloading strategy in tactical MEC ad-hoc network, which consists of multiple tactical edge nodes, ground MEC servers, unmanned aerial vehicle-MEC (UAV-MEC) servers and a low-Earth orbit-MEC (LEO-MEC) satellite server. Each edge node can offload its partial computation-intensive task to the MEC servers to reduce computational delay and energy consumption. First, a multileader and multifollower Stackelberg game (MLMF-SG) which includes leader subgame for MEC servers and follower subgame for edge nodes, is proposed to formulate the interaction between servers and edge nodes. It has been proved that there exists a Stackelberg equilibrium (SE) in the proposed MLMF-SG. In order to decrease the delay, energy consumption, and resource overhead, the follower subgame is further formulated as a multimode computation task offloading game. With the help of the exact potential game (EPG), we prove that the follower subgame can converge to the Nash equilibrium (NE). To achieve the SE, a hierarchical distributed iterative algorithm is designed to maximize the utilities of the leaders and followers. Finally, the simulation results demonstrate that the proposed scheme can achieve better performance compared with the existing schemes.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
迷糊发布了新的文献求助30
1秒前
LY发布了新的文献求助10
2秒前
zzz完成签到,获得积分10
2秒前
KimJongUn完成签到,获得积分10
2秒前
4秒前
4秒前
zy完成签到,获得积分10
5秒前
开心果子发布了新的文献求助10
5秒前
云痴子完成签到,获得积分10
6秒前
SciGPT应助粥粥采纳,获得10
6秒前
6秒前
6秒前
7秒前
苏源完成签到,获得积分10
7秒前
wu关闭了wu文献求助
7秒前
7秒前
8秒前
8秒前
9秒前
9秒前
9秒前
Shawn完成签到,获得积分10
10秒前
yltstt完成签到,获得积分10
11秒前
李小新发布了新的文献求助10
11秒前
成梦发布了新的文献求助10
12秒前
乐乐应助xuex1采纳,获得10
12秒前
蜂鸟5156发布了新的文献求助10
12秒前
李爱国应助VDC采纳,获得10
13秒前
14秒前
研友_VZG7GZ应助科研通管家采纳,获得10
14秒前
科研通AI2S应助科研通管家采纳,获得10
14秒前
14秒前
充电宝应助科研通管家采纳,获得10
14秒前
ns完成签到,获得积分10
14秒前
细腻晓露发布了新的文献求助10
14秒前
李本来发布了新的文献求助10
14秒前
乐乐应助科研通管家采纳,获得10
14秒前
英姑应助科研通管家采纳,获得10
14秒前
赘婿应助科研通管家采纳,获得30
15秒前
15秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527928
求助须知:如何正确求助?哪些是违规求助? 3108040
关于积分的说明 9287614
捐赠科研通 2805836
什么是DOI,文献DOI怎么找? 1540070
邀请新用户注册赠送积分活动 716904
科研通“疑难数据库(出版商)”最低求助积分说明 709808