亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

General Nonlinear Function-on-Function Regression via Functional Universal Approximation

数学 应用数学 功能(生物学) 非线性回归 非线性系统 回归 计算机科学 回归分析 数学优化 统计 物理 生物 量子力学 进化生物学
作者
Ruiyan Luo,Xin Qi
出处
期刊:Journal of Computational and Graphical Statistics [Taylor & Francis]
卷期号:33 (2): 578-587 被引量:2
标识
DOI:10.1080/10618600.2023.2252033
摘要

AbstractVarious linear or nonlinear function-on-function (FOF) regression models have been proposed to study the relationship between functional variables, where certain forms are assumed for the relationship. However, because functional variables take values in infinite-dimensional spaces, the relationships between them can be much more complicated than those between scalar variables. The forms in existing FOF models may not be enough to cover a wide variety of relationships between functional variables, and hence the applicability of these models can be limited. We consider a general nonlinear FOF regression model without any specific assumption on the model form. To fit the model, inspired by the universal approximation theorem for the neural networks with "arbitrary width," we develop a functional universal approximation theorem which asserts that a wide range of general maps between functional variables can be approximated with arbitrary accuracy by members in our proposed family of maps. This family is "fully" functional in that the complexity of the maps within the family is completely determined by the smoothness of the component functions in the map. With this functional universal approximation theorem, we develop a novel method to fit the general nonlinear FOF regression model, which includes all existing FOF models as special cases. The complexity of the fitted model is controlled by smoothness regularization, without the necessity to choose the number of hidden neurons. Supplemental materials for code and additional information are available online.KEYWORDS: Function-on-function regressionFunctional dataFunctional universal approximation theoremNeural networkNonlinear functional regressionUniversal approximation theorem Disclosure StatementNo potential conflict of interest was reported by the author(s).
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
CipherSage应助坚强白凝采纳,获得10
3秒前
量子星尘发布了新的文献求助10
3秒前
3秒前
4秒前
科研通AI2S应助科研通管家采纳,获得10
14秒前
MchemG应助科研通管家采纳,获得10
14秒前
量子星尘发布了新的文献求助10
19秒前
量子星尘发布了新的文献求助10
28秒前
42秒前
量子星尘发布了新的文献求助10
49秒前
1分钟前
量子星尘发布了新的文献求助10
1分钟前
量子星尘发布了新的文献求助10
1分钟前
稳重马里奥完成签到,获得积分10
1分钟前
1分钟前
量子星尘发布了新的文献求助10
1分钟前
量子星尘发布了新的文献求助10
1分钟前
1分钟前
量子星尘发布了新的文献求助10
2分钟前
科研通AI2S应助科研通管家采纳,获得10
2分钟前
量子星尘发布了新的文献求助10
2分钟前
量子星尘发布了新的文献求助10
2分钟前
量子星尘发布了新的文献求助10
2分钟前
量子星尘发布了新的文献求助10
3分钟前
poki完成签到 ,获得积分10
3分钟前
3分钟前
Daisy完成签到,获得积分10
3分钟前
量子星尘发布了新的文献求助10
3分钟前
3分钟前
3分钟前
3分钟前
量子星尘发布了新的文献求助10
3分钟前
量子星尘发布了新的文献求助10
3分钟前
量子星尘发布了新的文献求助10
4分钟前
勤劳的斑马完成签到,获得积分10
4分钟前
量子星尘发布了新的文献求助10
4分钟前
4分钟前
4分钟前
量子星尘发布了新的文献求助10
4分钟前
4分钟前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
Statistical Methods for the Social Sciences, Global Edition, 6th edition 600
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
ALUMINUM STANDARDS AND DATA 500
Walter Gilbert: Selected Works 500
岡本唐貴自伝的回想画集 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3666365
求助须知:如何正确求助?哪些是违规求助? 3225436
关于积分的说明 9762962
捐赠科研通 2935270
什么是DOI,文献DOI怎么找? 1607589
邀请新用户注册赠送积分活动 759266
科研通“疑难数据库(出版商)”最低求助积分说明 735188