Alzheimer’s Disease Prediction Using Deep Feature Extraction and Optimization

人工智能 计算机科学 特征(语言学) 特征选择 模式识别(心理学) 机器学习 特征提取 人口 医学 语言学 环境卫生 哲学
作者
Farah Mohammad,Saad Al-Ahmadi
出处
期刊:Mathematics [Multidisciplinary Digital Publishing Institute]
卷期号:11 (17): 3712-3712 被引量:1
标识
DOI:10.3390/math11173712
摘要

Alzheimer’s disease (AD) is a prevalent neurodegenerative disorder that affects a substantial proportion of the population. The accurate and timely prediction of AD carries considerable importance in enhancing the diagnostic process and improved treatment. This study provides a thorough examination of AD prediction using the VGG19 deep learning model. The primary objective of this study is to investigate the effectiveness of feature fusion and optimization techniques in enhancing the accuracy of classification. The generation of a comprehensive feature map is achieved through the fusion of features that have been extracted from the fc7 and fc8 layers of VGG19. Several machine learning algorithms are employed to classify integrated features and recognize AD. The amalgamated feature map demonstrates a significant level of accuracy of 98% in the prognostication of AD, outperforming present cutting-edge methodologies. In this study, a methodology is utilized that makes use of the whale optimization algorithm (WoA), a metaheuristic approach to optimize features through feature selection. Feature optimization aims to eliminate redundant features and enhance the discriminatory power of the selected features. Following the optimization procedure, the F-KNN algorithm attained a precision level of 99%, surpassing the present state-of-the-art (SOTA) results reported in the current literature.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
海夜发布了新的文献求助10
1秒前
火星上白风完成签到,获得积分10
1秒前
负责念梦发布了新的文献求助10
1秒前
2秒前
2秒前
脑洞疼应助hyl采纳,获得10
3秒前
orixero应助无问西东采纳,获得10
4秒前
zxxx完成签到,获得积分10
4秒前
yyds应助丢丢采纳,获得50
4秒前
5秒前
LL发布了新的文献求助10
6秒前
劳达完成签到,获得积分10
6秒前
6秒前
7秒前
BZPL发布了新的文献求助10
7秒前
8秒前
李健应助江蹇采纳,获得10
9秒前
劳达发布了新的文献求助10
10秒前
负责念梦完成签到,获得积分10
10秒前
shinble发布了新的文献求助10
10秒前
djiwisksk66应助LeonPrisig采纳,获得10
11秒前
糖葫芦完成签到,获得积分10
11秒前
12秒前
12秒前
贰鸟应助张继科keke采纳,获得10
13秒前
阿姜姜姜姜完成签到,获得积分10
13秒前
jenningseastera应助海夜采纳,获得20
13秒前
林飞云发布了新的文献求助10
14秒前
全智贤完成签到,获得积分10
15秒前
zy完成签到,获得积分10
15秒前
艾斯完成签到 ,获得积分10
16秒前
16秒前
XXJ完成签到,获得积分10
16秒前
psyYang完成签到,获得积分10
16秒前
16秒前
无心的怜烟完成签到 ,获得积分10
16秒前
自由世立发布了新的文献求助10
17秒前
无问西东发布了新的文献求助10
18秒前
卡卡西应助牛拉犁采纳,获得10
19秒前
19秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
Comparison of adverse drug reactions of heparin and its derivates in the European Economic Area based on data from EudraVigilance between 2017 and 2021 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3952180
求助须知:如何正确求助?哪些是违规求助? 3497683
关于积分的说明 11088472
捐赠科研通 3228269
什么是DOI,文献DOI怎么找? 1784720
邀请新用户注册赠送积分活动 868875
科研通“疑难数据库(出版商)”最低求助积分说明 801281