Reversely Trapping Isolated Atoms in High Oxidation State for Accelerating the Oxygen Evolution Reaction Kinetics

过电位 析氧 催化作用 密度泛函理论 动力学 无定形固体 氧化态 化学 材料科学 浸出(土壤学) 纳米技术 化学工程 化学物理 物理化学 计算化学 结晶学 电化学 电极 生物化学 物理 量子力学 工程类 环境科学 土壤科学 土壤水分
作者
Yang Li,Tingting Bo,Shouwei Zuo,Guikai Zhang,Zhao Xiaojuan,Wei Zhou,Xin Wu,Guoxiang Zhao,Huawei Huang,Lirong Zheng,Jing Zhang,Huabin Zhang,Jian Zhang
出处
期刊:Angewandte Chemie [Wiley]
卷期号:62 (41) 被引量:19
标识
DOI:10.1002/anie.202309341
摘要

Developing efficient electrocatalysts for the oxygen evolution reaction (OER) is paramount to the energy conversion and storage devices. However, the structural complexity of heterogeneous electrocatalysts makes it a great challenge to elucidate the dynamic structural evolution and OER mechanisms. Here, we develop a controllable atom-trapping strategy to extract isolated Mo atom from the amorphous MoOx -decorated CoSe2 (a-MoOx @CoSe2 ) pre-catalyst into Co-based oxyhydroxide (Mo-CoOOH) through an ultra-fast self-reconstruction process during the OER process. This conceptual advance has been validated by operando characterizations, which reveals that the initially rapid Mo leaching can expedite the dynamic reconstruction of pre-catalyst, and simultaneously trap Mo species in high oxidation state into the lattice of in situ generated CoOOH support. Impressively, the OER kinetics of CoOOH has been greatly accelerated after the reverse decoration of Mo species, in which the Mo-CoOOH affords a markedly decreased overpotential of 297 mV at the current density of 100 mA cm-2 . Density functional theory (DFT) calculations demonstrate that the Co species have been greatly activated via the effective electron coupling with Mo species in high oxidation state. These findings open new avenues toward directly synthesizing atomically dispersed electrocatalysts for high-efficiency water splitting.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
郑小七发布了新的文献求助10
刚刚
Tianxu Li完成签到,获得积分10
1秒前
1秒前
九川发布了新的文献求助10
2秒前
Lucas应助无限的隶采纳,获得10
2秒前
胡雅琴完成签到,获得积分10
2秒前
sakurai完成签到,获得积分10
3秒前
清歌扶酒关注了科研通微信公众号
3秒前
二尖瓣后叶举报ww求助涉嫌违规
3秒前
烟花应助轻松笙采纳,获得10
3秒前
沉默凡桃完成签到,获得积分10
4秒前
4秒前
luuuuuing发布了新的文献求助30
4秒前
啦啦啦完成签到,获得积分10
4秒前
小可发布了新的文献求助10
4秒前
5秒前
LKGG完成签到 ,获得积分10
5秒前
6秒前
6秒前
6秒前
周士乐发布了新的文献求助10
6秒前
Sunshine发布了新的文献求助10
6秒前
呼吸之野完成签到,获得积分10
7秒前
害怕的小懒虫完成签到,获得积分10
7秒前
思源应助Nefelibata采纳,获得10
8秒前
妮儿发布了新的文献求助10
8秒前
BareBear应助rosa采纳,获得10
8秒前
沉默凡桃发布了新的文献求助10
9秒前
Orange应助9℃采纳,获得10
9秒前
9秒前
一只橘子完成签到 ,获得积分10
9秒前
10秒前
韭黄发布了新的文献求助10
10秒前
西瓜发布了新的文献求助10
10秒前
Ll发布了新的文献求助10
10秒前
10秒前
wcy关注了科研通微信公众号
10秒前
11秒前
11秒前
CipherSage应助爱喝冰可乐采纳,获得10
12秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527699
求助须知:如何正确求助?哪些是违规求助? 3107752
关于积分的说明 9286499
捐赠科研通 2805513
什么是DOI,文献DOI怎么找? 1539954
邀请新用户注册赠送积分活动 716878
科研通“疑难数据库(出版商)”最低求助积分说明 709759