重要提醒:2025.12.15 12:00-12:50期间发布的求助,下载出现了问题,现在已经修复完毕,请重新下载即可。如非文件错误,请不要进行驳回。

Quantitative image signature and machine learning-based prediction of outcomes in cerebral cavernous malformations

人工智能 特征选择 机器学习 接收机工作特性 流体衰减反转恢复 医学 计算机科学 模式识别(心理学) 磁共振成像 放射科
作者
Mohamed Sobhi Jabal,Marwa A. Mohammed,Hassan Kobeissi,Giuseppe Lanzino,Waleed Brinjikji,Kelly D. Flemming
出处
期刊:Journal of stroke and cerebrovascular diseases [Elsevier]
卷期号:33 (1): 107462-107462 被引量:4
标识
DOI:10.1016/j.jstrokecerebrovasdis.2023.107462
摘要

Abstract

Purpose

There is increasing interest in novel prognostic tools and predictive biomarkers to help identify, with more certainty, cerebral cavernous malformations (CCM) susceptible of bleeding if left untreated. We developed explainable quantitative-based machine learning models from magnetic resonance imaging (MRI) in a large CCM cohort to demonstrate the value of artificial intelligence and radiomics in complementing natural history studies for hemorrhage and functional outcome prediction.

Materials and Methods

One-hundred-eighty-one patients from a prospectively registered cohort of 366 adults with CCM were included. Fluid attenuated inversion recovery (FLAIR) T2-weighted brain images were preprocessed, and CCM and surrounding edema were segmented before radiomic feature computation. Minority class oversampling, dimensionality reduction and feature selection methods were applied. With prospective hemorrhage as primary outcome, machine learning models were built, cross-validated, and compared using clinico-radiologic, radiomic, and combined features. SHapley Additive exPlanations (SHAP) was used for interpretation to determine the radiomic features with most contribution to hemorrhage prediction.

Results

The highest performances in hemorrhage predictions on the test set were combining radiomic and clinico-radiological features with an area under the curve (AUC) of 83% using linear regression and selected features, and an F1 score of 61% and 85% sensitivity using K-nearest neighbors with principal component analysis (PCA). Multilayer perceptron had the best performance predicting modified Rankin Scale ≥ 2 with an AUC of 74% using PCA derived features. For interpretation of the selected radiomic signature XGBoost model, Shapley additive explanations highlighted 6 radiomic features contributing the most to hemorrhage prediction.

Conclusion

Quantitative image-based modeling using machine learning has the potential to highlight novel imaging biomarkers that predict hemorrhagic and functional outcomes, ensuring more precise and personalized care for CCM patients.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
苹果寻菱发布了新的文献求助30
刚刚
Zo发布了新的文献求助30
1秒前
lvbowen发布了新的文献求助10
1秒前
自由碧菡完成签到,获得积分20
1秒前
云边完成签到,获得积分10
1秒前
无语的夜春完成签到,获得积分10
1秒前
WBTT完成签到,获得积分20
1秒前
烟花应助666采纳,获得10
2秒前
3秒前
3秒前
chh完成签到,获得积分10
3秒前
3秒前
Robin发布了新的文献求助10
3秒前
3秒前
科研小李发布了新的文献求助10
4秒前
4秒前
4秒前
faye完成签到 ,获得积分20
4秒前
5秒前
bae关闭了bae文献求助
5秒前
hey应助tyche采纳,获得10
5秒前
多看文献完成签到,获得积分10
6秒前
JamesPei应助猪猪hero采纳,获得10
6秒前
6秒前
麞欎完成签到,获得积分10
7秒前
7秒前
坚定晓兰应助舒服的雁兰采纳,获得10
7秒前
小蘑菇应助舒服的雁兰采纳,获得10
7秒前
乐乐应助蒋蒋采纳,获得10
7秒前
科研通AI6应助要减肥采纳,获得10
7秒前
haha发布了新的文献求助10
7秒前
8秒前
Hou完成签到,获得积分10
8秒前
8秒前
kk0612发布了新的文献求助10
9秒前
苹果寻菱完成签到,获得积分10
9秒前
10秒前
大胆夜天发布了新的文献求助10
10秒前
vffg发布了新的文献求助10
10秒前
123noo发布了新的文献求助10
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1001
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
On the application of advanced modeling tools to the SLB analysis in NuScale. Part I: TRACE/PARCS, TRACE/PANTHER and ATHLET/DYN3D 500
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
Haematolymphoid Tumours (Part A and Part B, WHO Classification of Tumours, 5th Edition, Volume 11) 400
Virus-like particles empower RNAi for effective control of a Coleopteran pest 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5467299
求助须知:如何正确求助?哪些是违规求助? 4571085
关于积分的说明 14328325
捐赠科研通 4497634
什么是DOI,文献DOI怎么找? 2464057
邀请新用户注册赠送积分活动 1452861
关于科研通互助平台的介绍 1427654