Quantitative image signature and machine learning-based prediction of outcomes in cerebral cavernous malformations

人工智能 特征选择 机器学习 接收机工作特性 流体衰减反转恢复 医学 计算机科学 模式识别(心理学) 磁共振成像 放射科
作者
Mohamed Sobhi Jabal,Marwa A. Mohammed,Hassan Kobeissi,Giuseppe Lanzino,Waleed Brinjikji,Kelly D. Flemming
出处
期刊:Journal of stroke and cerebrovascular diseases [Elsevier BV]
卷期号:33 (1): 107462-107462 被引量:4
标识
DOI:10.1016/j.jstrokecerebrovasdis.2023.107462
摘要

Abstract

Purpose

There is increasing interest in novel prognostic tools and predictive biomarkers to help identify, with more certainty, cerebral cavernous malformations (CCM) susceptible of bleeding if left untreated. We developed explainable quantitative-based machine learning models from magnetic resonance imaging (MRI) in a large CCM cohort to demonstrate the value of artificial intelligence and radiomics in complementing natural history studies for hemorrhage and functional outcome prediction.

Materials and Methods

One-hundred-eighty-one patients from a prospectively registered cohort of 366 adults with CCM were included. Fluid attenuated inversion recovery (FLAIR) T2-weighted brain images were preprocessed, and CCM and surrounding edema were segmented before radiomic feature computation. Minority class oversampling, dimensionality reduction and feature selection methods were applied. With prospective hemorrhage as primary outcome, machine learning models were built, cross-validated, and compared using clinico-radiologic, radiomic, and combined features. SHapley Additive exPlanations (SHAP) was used for interpretation to determine the radiomic features with most contribution to hemorrhage prediction.

Results

The highest performances in hemorrhage predictions on the test set were combining radiomic and clinico-radiological features with an area under the curve (AUC) of 83% using linear regression and selected features, and an F1 score of 61% and 85% sensitivity using K-nearest neighbors with principal component analysis (PCA). Multilayer perceptron had the best performance predicting modified Rankin Scale ≥ 2 with an AUC of 74% using PCA derived features. For interpretation of the selected radiomic signature XGBoost model, Shapley additive explanations highlighted 6 radiomic features contributing the most to hemorrhage prediction.

Conclusion

Quantitative image-based modeling using machine learning has the potential to highlight novel imaging biomarkers that predict hemorrhagic and functional outcomes, ensuring more precise and personalized care for CCM patients.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
漱泉枕石完成签到,获得积分10
1秒前
华仔应助edtaa采纳,获得10
1秒前
田様应助euy采纳,获得10
1秒前
外向汽车发布了新的文献求助10
2秒前
Nextf1sh完成签到,获得积分10
2秒前
xxy关注了科研通微信公众号
3秒前
科研通AI5应助张立敏采纳,获得10
5秒前
5秒前
6秒前
铁甲小宝完成签到,获得积分10
6秒前
77完成签到,获得积分10
6秒前
SallyLuo完成签到,获得积分10
6秒前
7秒前
fdawn完成签到,获得积分10
7秒前
旺仔糖完成签到,获得积分20
8秒前
上官若男应助闹心采纳,获得10
9秒前
量子星尘发布了新的文献求助150
9秒前
大米发布了新的文献求助30
9秒前
秋风暖暖发布了新的文献求助10
10秒前
爆米花应助萧萧萧采纳,获得10
11秒前
微笑不可完成签到 ,获得积分10
11秒前
带着太阳去旅行完成签到,获得积分20
11秒前
千日粉发布了新的文献求助10
12秒前
12秒前
edtaa完成签到,获得积分10
13秒前
天天开心完成签到,获得积分10
13秒前
漱泉枕石发布了新的文献求助10
13秒前
13秒前
14秒前
15秒前
xu完成签到,获得积分20
15秒前
bob完成签到,获得积分10
18秒前
18秒前
田様应助鲤鱼烙采纳,获得10
19秒前
Sea_U应助Sylvie采纳,获得10
19秒前
张立敏发布了新的文献求助10
20秒前
淼队发布了新的文献求助10
20秒前
共享精神应助千日粉采纳,获得10
21秒前
长情萤发布了新的文献求助10
21秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Acute Mountain Sickness 2000
Cowries - A Guide to the Gastropod Family Cypraeidae 1200
Handbook of Milkfat Fractionation Technology and Application, by Kerry E. Kaylegian and Robert C. Lindsay, AOCS Press, 1995 1000
Why Neuroscience Matters in the Classroom 500
The Affinity Designer Manual - Version 2: A Step-by-Step Beginner's Guide 500
Affinity Designer Essentials: A Complete Guide to Vector Art: Your Ultimate Handbook for High-Quality Vector Graphics 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5048792
求助须知:如何正确求助?哪些是违规求助? 4277060
关于积分的说明 13332258
捐赠科研通 4091605
什么是DOI,文献DOI怎么找? 2239138
邀请新用户注册赠送积分活动 1246031
关于科研通互助平台的介绍 1174599