Quantitative image signature and machine learning-based prediction of outcomes in cerebral cavernous malformations

人工智能 特征选择 机器学习 接收机工作特性 流体衰减反转恢复 医学 计算机科学 模式识别(心理学) 磁共振成像 放射科
作者
Mohamed Sobhi Jabal,Marwa A. Mohammed,Hassan Kobeissi,Giuseppe Lanzino,Waleed Brinjikji,Kelly D. Flemming
出处
期刊:Journal of stroke and cerebrovascular diseases [Elsevier]
卷期号:33 (1): 107462-107462 被引量:4
标识
DOI:10.1016/j.jstrokecerebrovasdis.2023.107462
摘要

Abstract

Purpose

There is increasing interest in novel prognostic tools and predictive biomarkers to help identify, with more certainty, cerebral cavernous malformations (CCM) susceptible of bleeding if left untreated. We developed explainable quantitative-based machine learning models from magnetic resonance imaging (MRI) in a large CCM cohort to demonstrate the value of artificial intelligence and radiomics in complementing natural history studies for hemorrhage and functional outcome prediction.

Materials and Methods

One-hundred-eighty-one patients from a prospectively registered cohort of 366 adults with CCM were included. Fluid attenuated inversion recovery (FLAIR) T2-weighted brain images were preprocessed, and CCM and surrounding edema were segmented before radiomic feature computation. Minority class oversampling, dimensionality reduction and feature selection methods were applied. With prospective hemorrhage as primary outcome, machine learning models were built, cross-validated, and compared using clinico-radiologic, radiomic, and combined features. SHapley Additive exPlanations (SHAP) was used for interpretation to determine the radiomic features with most contribution to hemorrhage prediction.

Results

The highest performances in hemorrhage predictions on the test set were combining radiomic and clinico-radiological features with an area under the curve (AUC) of 83% using linear regression and selected features, and an F1 score of 61% and 85% sensitivity using K-nearest neighbors with principal component analysis (PCA). Multilayer perceptron had the best performance predicting modified Rankin Scale ≥ 2 with an AUC of 74% using PCA derived features. For interpretation of the selected radiomic signature XGBoost model, Shapley additive explanations highlighted 6 radiomic features contributing the most to hemorrhage prediction.

Conclusion

Quantitative image-based modeling using machine learning has the potential to highlight novel imaging biomarkers that predict hemorrhagic and functional outcomes, ensuring more precise and personalized care for CCM patients.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
芯梓12完成签到 ,获得积分10
1秒前
dai完成签到,获得积分10
1秒前
精明的听寒完成签到,获得积分10
1秒前
善学以致用应助yuanyuan采纳,获得10
1秒前
百事可乐完成签到,获得积分10
2秒前
li完成签到 ,获得积分10
2秒前
Ling发布了新的文献求助10
2秒前
2秒前
3秒前
5秒前
7秒前
蝉鸣完成签到 ,获得积分10
7秒前
danli发布了新的文献求助10
7秒前
桐桐应助wuxunxun2015采纳,获得10
8秒前
8秒前
小竹完成签到 ,获得积分10
8秒前
喵咪西西发布了新的文献求助10
8秒前
啦啦啦啦呼完成签到,获得积分10
9秒前
9秒前
13秒前
ding应助morry5007采纳,获得10
14秒前
14秒前
16秒前
16秒前
17秒前
嘛呱完成签到,获得积分10
18秒前
18秒前
lingzhi发布了新的文献求助10
19秒前
zjw完成签到 ,获得积分10
19秒前
19秒前
ATBG55完成签到 ,获得积分10
21秒前
小不点发布了新的文献求助10
21秒前
21秒前
英俊的铭应助付清采纳,获得10
21秒前
少艾发布了新的文献求助10
23秒前
24秒前
量子星尘发布了新的文献求助10
25秒前
yx完成签到,获得积分10
25秒前
7747完成签到 ,获得积分10
26秒前
29秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
King Tyrant 720
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
The Synthesis of Simplified Analogues of Crambescin B Carboxylic Acid and Their Inhibitory Activity of Voltage-Gated Sodium Channels: New Aspects of Structure–Activity Relationships 400
El poder y la palabra: prensa y poder político en las dictaduras : el régimen de Franco ante la prensa y el periodismo 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5598772
求助须知:如何正确求助?哪些是违规求助? 4684180
关于积分的说明 14834106
捐赠科研通 4664702
什么是DOI,文献DOI怎么找? 2537384
邀请新用户注册赠送积分活动 1504909
关于科研通互助平台的介绍 1470606