Quantitative image signature and machine learning-based prediction of outcomes in cerebral cavernous malformations

人工智能 特征选择 机器学习 接收机工作特性 流体衰减反转恢复 医学 计算机科学 模式识别(心理学) 磁共振成像 放射科
作者
Mohamed Sobhi Jabal,Marwa A. Mohammed,Hassan Kobeissi,Giuseppe Lanzino,Waleed Brinjikji,Kelly D. Flemming
出处
期刊:Journal of stroke and cerebrovascular diseases [Elsevier]
卷期号:33 (1): 107462-107462
标识
DOI:10.1016/j.jstrokecerebrovasdis.2023.107462
摘要

Abstract

Purpose

There is increasing interest in novel prognostic tools and predictive biomarkers to help identify, with more certainty, cerebral cavernous malformations (CCM) susceptible of bleeding if left untreated. We developed explainable quantitative-based machine learning models from magnetic resonance imaging (MRI) in a large CCM cohort to demonstrate the value of artificial intelligence and radiomics in complementing natural history studies for hemorrhage and functional outcome prediction.

Materials and Methods

One-hundred-eighty-one patients from a prospectively registered cohort of 366 adults with CCM were included. Fluid attenuated inversion recovery (FLAIR) T2-weighted brain images were preprocessed, and CCM and surrounding edema were segmented before radiomic feature computation. Minority class oversampling, dimensionality reduction and feature selection methods were applied. With prospective hemorrhage as primary outcome, machine learning models were built, cross-validated, and compared using clinico-radiologic, radiomic, and combined features. SHapley Additive exPlanations (SHAP) was used for interpretation to determine the radiomic features with most contribution to hemorrhage prediction.

Results

The highest performances in hemorrhage predictions on the test set were combining radiomic and clinico-radiological features with an area under the curve (AUC) of 83% using linear regression and selected features, and an F1 score of 61% and 85% sensitivity using K-nearest neighbors with principal component analysis (PCA). Multilayer perceptron had the best performance predicting modified Rankin Scale ≥ 2 with an AUC of 74% using PCA derived features. For interpretation of the selected radiomic signature XGBoost model, Shapley additive explanations highlighted 6 radiomic features contributing the most to hemorrhage prediction.

Conclusion

Quantitative image-based modeling using machine learning has the potential to highlight novel imaging biomarkers that predict hemorrhagic and functional outcomes, ensuring more precise and personalized care for CCM patients.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
负责的寒梅完成签到 ,获得积分10
2秒前
帅气的海露完成签到 ,获得积分10
4秒前
weng完成签到,获得积分10
4秒前
嘻哈学习完成签到,获得积分10
9秒前
烟熏妆的猫完成签到 ,获得积分10
16秒前
LXZ完成签到,获得积分10
16秒前
电子屎壳郎完成签到,获得积分10
22秒前
高大的莞完成签到 ,获得积分10
22秒前
欢喜梦凡完成签到 ,获得积分10
24秒前
细心健柏完成签到 ,获得积分10
24秒前
曹文鹏完成签到 ,获得积分10
27秒前
大喜子完成签到 ,获得积分10
29秒前
lkk183完成签到 ,获得积分10
29秒前
干净的天奇完成签到 ,获得积分10
31秒前
追寻的从云完成签到 ,获得积分10
41秒前
开放素完成签到 ,获得积分10
42秒前
Ivan完成签到 ,获得积分10
50秒前
50秒前
糖宝完成签到 ,获得积分10
52秒前
Ricky小强发布了新的文献求助10
56秒前
执念完成签到 ,获得积分10
56秒前
内向的白玉完成签到 ,获得积分10
57秒前
朱奕韬发布了新的文献求助10
59秒前
GealAntS完成签到,获得积分0
59秒前
Eason Liu完成签到,获得积分10
59秒前
动听的飞松完成签到 ,获得积分10
1分钟前
1分钟前
跳跃太清完成签到 ,获得积分10
1分钟前
南宫若翠发布了新的文献求助20
1分钟前
mzrrong完成签到 ,获得积分10
1分钟前
Ray完成签到 ,获得积分10
1分钟前
水文小白完成签到,获得积分10
1分钟前
木光完成签到,获得积分20
1分钟前
冷傲机器猫完成签到,获得积分10
1分钟前
chcmy完成签到 ,获得积分0
1分钟前
hcjxj完成签到,获得积分10
1分钟前
Shinkai39完成签到 ,获得积分10
1分钟前
FashionBoy应助小九采纳,获得10
1分钟前
heyvan完成签到 ,获得积分10
1分钟前
三国杀校老弟完成签到,获得积分10
1分钟前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
叶剑英与华南分局档案史料 500
Foreign Policy of the French Second Empire: A Bibliography 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3146916
求助须知:如何正确求助?哪些是违规求助? 2798171
关于积分的说明 7826798
捐赠科研通 2454724
什么是DOI,文献DOI怎么找? 1306446
科研通“疑难数据库(出版商)”最低求助积分说明 627788
版权声明 601565