Quantitative image signature and machine learning-based prediction of outcomes in cerebral cavernous malformations

人工智能 特征选择 机器学习 接收机工作特性 流体衰减反转恢复 医学 计算机科学 模式识别(心理学) 磁共振成像 放射科
作者
Mohamed Sobhi Jabal,Marwa A. Mohammed,Hassan Kobeissi,Giuseppe Lanzino,Waleed Brinjikji,Kelly D. Flemming
出处
期刊:Journal of stroke and cerebrovascular diseases [Elsevier]
卷期号:33 (1): 107462-107462 被引量:4
标识
DOI:10.1016/j.jstrokecerebrovasdis.2023.107462
摘要

Abstract

Purpose

There is increasing interest in novel prognostic tools and predictive biomarkers to help identify, with more certainty, cerebral cavernous malformations (CCM) susceptible of bleeding if left untreated. We developed explainable quantitative-based machine learning models from magnetic resonance imaging (MRI) in a large CCM cohort to demonstrate the value of artificial intelligence and radiomics in complementing natural history studies for hemorrhage and functional outcome prediction.

Materials and Methods

One-hundred-eighty-one patients from a prospectively registered cohort of 366 adults with CCM were included. Fluid attenuated inversion recovery (FLAIR) T2-weighted brain images were preprocessed, and CCM and surrounding edema were segmented before radiomic feature computation. Minority class oversampling, dimensionality reduction and feature selection methods were applied. With prospective hemorrhage as primary outcome, machine learning models were built, cross-validated, and compared using clinico-radiologic, radiomic, and combined features. SHapley Additive exPlanations (SHAP) was used for interpretation to determine the radiomic features with most contribution to hemorrhage prediction.

Results

The highest performances in hemorrhage predictions on the test set were combining radiomic and clinico-radiological features with an area under the curve (AUC) of 83% using linear regression and selected features, and an F1 score of 61% and 85% sensitivity using K-nearest neighbors with principal component analysis (PCA). Multilayer perceptron had the best performance predicting modified Rankin Scale ≥ 2 with an AUC of 74% using PCA derived features. For interpretation of the selected radiomic signature XGBoost model, Shapley additive explanations highlighted 6 radiomic features contributing the most to hemorrhage prediction.

Conclusion

Quantitative image-based modeling using machine learning has the potential to highlight novel imaging biomarkers that predict hemorrhagic and functional outcomes, ensuring more precise and personalized care for CCM patients.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
乐观海云完成签到 ,获得积分10
3秒前
xiewuhua完成签到,获得积分10
4秒前
诚诚不差事完成签到,获得积分10
5秒前
无限萃完成签到,获得积分10
8秒前
dong完成签到 ,获得积分10
8秒前
丨墨月丨完成签到,获得积分10
10秒前
磊大彪完成签到 ,获得积分10
12秒前
橙子完成签到,获得积分20
14秒前
fire完成签到 ,获得积分10
20秒前
kusicfack完成签到,获得积分10
23秒前
蕉鲁诺蕉巴纳完成签到,获得积分0
24秒前
量子星尘发布了新的文献求助10
26秒前
平凡世界完成签到 ,获得积分10
29秒前
木康薛完成签到,获得积分10
29秒前
fire完成签到 ,获得积分10
30秒前
五本笔记完成签到 ,获得积分10
34秒前
研友Bn完成签到 ,获得积分10
35秒前
35秒前
339564965完成签到,获得积分10
37秒前
可乐发布了新的文献求助10
41秒前
bener完成签到,获得积分10
42秒前
陈鹿华完成签到 ,获得积分10
43秒前
44秒前
44秒前
小录完成签到 ,获得积分10
44秒前
lym完成签到,获得积分10
46秒前
冲冲冲完成签到 ,获得积分10
47秒前
阿策完成签到,获得积分10
48秒前
sci发发发发布了新的文献求助10
49秒前
碗碗豆喵完成签到 ,获得积分10
52秒前
ccc完成签到,获得积分0
53秒前
Keyuuu30完成签到,获得积分0
54秒前
孤独的问柳完成签到,获得积分10
54秒前
sci发发发完成签到,获得积分20
59秒前
龙2024完成签到,获得积分10
1分钟前
蜡笔小z完成签到 ,获得积分10
1分钟前
琪琪完成签到,获得积分10
1分钟前
1分钟前
只想顺利毕业的科研狗完成签到,获得积分0
1分钟前
kaiqiang完成签到,获得积分0
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
人脑智能与人工智能 1000
King Tyrant 720
Silicon in Organic, Organometallic, and Polymer Chemistry 500
Peptide Synthesis_Methods and Protocols 400
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5603452
求助须知:如何正确求助?哪些是违规求助? 4688452
关于积分的说明 14853800
捐赠科研通 4692440
什么是DOI,文献DOI怎么找? 2540735
邀请新用户注册赠送积分活动 1507039
关于科研通互助平台的介绍 1471707