Quantitative image signature and machine learning-based prediction of outcomes in cerebral cavernous malformations

人工智能 特征选择 机器学习 接收机工作特性 流体衰减反转恢复 医学 计算机科学 模式识别(心理学) 磁共振成像 放射科
作者
Mohamed Sobhi Jabal,Marwa A. Mohammed,Hassan Kobeissi,Giuseppe Lanzino,Waleed Brinjikji,Kelly D. Flemming
出处
期刊:Journal of stroke and cerebrovascular diseases [Elsevier]
卷期号:33 (1): 107462-107462 被引量:4
标识
DOI:10.1016/j.jstrokecerebrovasdis.2023.107462
摘要

Abstract

Purpose

There is increasing interest in novel prognostic tools and predictive biomarkers to help identify, with more certainty, cerebral cavernous malformations (CCM) susceptible of bleeding if left untreated. We developed explainable quantitative-based machine learning models from magnetic resonance imaging (MRI) in a large CCM cohort to demonstrate the value of artificial intelligence and radiomics in complementing natural history studies for hemorrhage and functional outcome prediction.

Materials and Methods

One-hundred-eighty-one patients from a prospectively registered cohort of 366 adults with CCM were included. Fluid attenuated inversion recovery (FLAIR) T2-weighted brain images were preprocessed, and CCM and surrounding edema were segmented before radiomic feature computation. Minority class oversampling, dimensionality reduction and feature selection methods were applied. With prospective hemorrhage as primary outcome, machine learning models were built, cross-validated, and compared using clinico-radiologic, radiomic, and combined features. SHapley Additive exPlanations (SHAP) was used for interpretation to determine the radiomic features with most contribution to hemorrhage prediction.

Results

The highest performances in hemorrhage predictions on the test set were combining radiomic and clinico-radiological features with an area under the curve (AUC) of 83% using linear regression and selected features, and an F1 score of 61% and 85% sensitivity using K-nearest neighbors with principal component analysis (PCA). Multilayer perceptron had the best performance predicting modified Rankin Scale ≥ 2 with an AUC of 74% using PCA derived features. For interpretation of the selected radiomic signature XGBoost model, Shapley additive explanations highlighted 6 radiomic features contributing the most to hemorrhage prediction.

Conclusion

Quantitative image-based modeling using machine learning has the potential to highlight novel imaging biomarkers that predict hemorrhagic and functional outcomes, ensuring more precise and personalized care for CCM patients.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Otter发布了新的文献求助10
1秒前
爆米花应助dakjdia采纳,获得10
1秒前
朱一龙完成签到,获得积分10
2秒前
3秒前
3秒前
多多指教完成签到,获得积分10
4秒前
幼儿园老大完成签到,获得积分10
4秒前
小陈1122发布了新的文献求助10
5秒前
量子星尘发布了新的文献求助10
5秒前
5秒前
6秒前
6秒前
wzjs发布了新的文献求助10
6秒前
不配.应助hky采纳,获得80
7秒前
浮游应助Ivy采纳,获得10
8秒前
9秒前
9秒前
9秒前
Meredith发布了新的文献求助10
9秒前
10秒前
10秒前
yys发布了新的文献求助30
10秒前
Haijiao发布了新的文献求助10
11秒前
Yang完成签到,获得积分10
12秒前
FashionBoy应助小陈1122采纳,获得10
12秒前
12秒前
Linos应助dafhluih采纳,获得10
12秒前
13秒前
孙勇发发布了新的文献求助10
13秒前
xiaomeng发布了新的文献求助10
13秒前
安秀丽发布了新的文献求助10
15秒前
科研通AI6应助舒适的素采纳,获得10
16秒前
Leeshore发布了新的文献求助150
16秒前
lixx发布了新的文献求助10
17秒前
御风完成签到,获得积分10
17秒前
玄风应助岳拔萃采纳,获得10
17秒前
慕青应助从容飞阳采纳,获得10
17秒前
小赵同学发布了新的文献求助10
19秒前
在水一方应助指哪打哪采纳,获得10
19秒前
19秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1581
Encyclopedia of Agriculture and Food Systems Third Edition 1500
以液相層析串聯質譜法分析糖漿產品中活性雙羰基化合物 / 吳瑋元[撰] = Analysis of reactive dicarbonyl species in syrup products by LC-MS/MS / Wei-Yuan Wu 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 600
Pediatric Nutrition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5547929
求助须知:如何正确求助?哪些是违规求助? 4633375
关于积分的说明 14630983
捐赠科研通 4574989
什么是DOI,文献DOI怎么找? 2508795
邀请新用户注册赠送积分活动 1485047
关于科研通互助平台的介绍 1456075