Quantitative image signature and machine learning-based prediction of outcomes in cerebral cavernous malformations

人工智能 特征选择 机器学习 接收机工作特性 流体衰减反转恢复 医学 计算机科学 模式识别(心理学) 磁共振成像 放射科
作者
Mohamed Sobhi Jabal,Marwa A. Mohammed,Hassan Kobeissi,Giuseppe Lanzino,Waleed Brinjikji,Kelly D. Flemming
出处
期刊:Journal of stroke and cerebrovascular diseases [Elsevier BV]
卷期号:33 (1): 107462-107462 被引量:2
标识
DOI:10.1016/j.jstrokecerebrovasdis.2023.107462
摘要

Abstract

Purpose

There is increasing interest in novel prognostic tools and predictive biomarkers to help identify, with more certainty, cerebral cavernous malformations (CCM) susceptible of bleeding if left untreated. We developed explainable quantitative-based machine learning models from magnetic resonance imaging (MRI) in a large CCM cohort to demonstrate the value of artificial intelligence and radiomics in complementing natural history studies for hemorrhage and functional outcome prediction.

Materials and Methods

One-hundred-eighty-one patients from a prospectively registered cohort of 366 adults with CCM were included. Fluid attenuated inversion recovery (FLAIR) T2-weighted brain images were preprocessed, and CCM and surrounding edema were segmented before radiomic feature computation. Minority class oversampling, dimensionality reduction and feature selection methods were applied. With prospective hemorrhage as primary outcome, machine learning models were built, cross-validated, and compared using clinico-radiologic, radiomic, and combined features. SHapley Additive exPlanations (SHAP) was used for interpretation to determine the radiomic features with most contribution to hemorrhage prediction.

Results

The highest performances in hemorrhage predictions on the test set were combining radiomic and clinico-radiological features with an area under the curve (AUC) of 83% using linear regression and selected features, and an F1 score of 61% and 85% sensitivity using K-nearest neighbors with principal component analysis (PCA). Multilayer perceptron had the best performance predicting modified Rankin Scale ≥ 2 with an AUC of 74% using PCA derived features. For interpretation of the selected radiomic signature XGBoost model, Shapley additive explanations highlighted 6 radiomic features contributing the most to hemorrhage prediction.

Conclusion

Quantitative image-based modeling using machine learning has the potential to highlight novel imaging biomarkers that predict hemorrhagic and functional outcomes, ensuring more precise and personalized care for CCM patients.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
zhangsansan发布了新的文献求助10
刚刚
情怀应助唧唧采纳,获得10
2秒前
丘比特应助李梓权采纳,获得10
3秒前
ssxw发布了新的文献求助10
5秒前
愉快寄真完成签到,获得积分10
5秒前
拉长的大侠完成签到 ,获得积分10
6秒前
6秒前
8秒前
10秒前
12秒前
我是老大应助shinn采纳,获得20
12秒前
晨曦完成签到,获得积分10
13秒前
14秒前
唧唧完成签到,获得积分20
14秒前
15秒前
李梓权发布了新的文献求助10
16秒前
Carrer完成签到,获得积分10
18秒前
唧唧发布了新的文献求助10
18秒前
cora完成签到 ,获得积分20
18秒前
Owen应助动人的宫苴采纳,获得10
20秒前
可爱的小桃完成签到,获得积分10
21秒前
21秒前
22秒前
科研通AI5应助曼凡采纳,获得10
28秒前
善学以致用应助beifa采纳,获得10
31秒前
科研通AI2S应助1177采纳,获得10
32秒前
jack完成签到,获得积分10
32秒前
33秒前
体贴汽车发布了新的文献求助10
33秒前
卢明月完成签到,获得积分10
34秒前
Rollin完成签到 ,获得积分10
34秒前
哈哈哈发布了新的文献求助10
36秒前
CipherSage应助lvlv采纳,获得10
36秒前
天天快乐应助星燃采纳,获得10
36秒前
Komorebi完成签到 ,获得积分10
37秒前
科研通AI5应助yiy采纳,获得10
38秒前
bkagyin应助啊啊的采纳,获得10
38秒前
赵某人完成签到,获得积分10
39秒前
40秒前
42秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 600
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3967175
求助须知:如何正确求助?哪些是违规求助? 3512515
关于积分的说明 11163672
捐赠科研通 3247423
什么是DOI,文献DOI怎么找? 1793810
邀请新用户注册赠送积分活动 874616
科研通“疑难数据库(出版商)”最低求助积分说明 804488