亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Semi-supervised medical image segmentation via feature similarity and reliable-region enhancement

分割 计算机科学 人工智能 特征(语言学) 相似性(几何) 模式识别(心理学) 尺度空间分割 图像分割 任务(项目管理) 基于分割的对象分类 注释 图像(数学) 哲学 语言学 管理 经济
作者
Jianwu Long,Chengxin Yang,Yan Ren,Ziqin Zeng
出处
期刊:Computers in Biology and Medicine [Elsevier]
卷期号:167: 107668-107668 被引量:7
标识
DOI:10.1016/j.compbiomed.2023.107668
摘要

Semantic segmentation is a crucial task in the field of computer vision, and medical image segmentation, as its downstream task, has made significant breakthroughs in recent years. However, the issue of requiring a large number of annotations in medical image segmentation has remained a major challenge. Semi-supervised semantic segmentation has provided a powerful approach to address the annotation problem. Nevertheless, existing semi-supervised semantic segmentation methods in medical images have drawbacks, such as insufficient exploitation of unlabeled data information and inefficient utilization of all pseudo-label information. We introduces a novel segmentation model, the Feature Similarity and Reliable-region Enhancement Network (FSRENet), to overcome these limitations. Firstly, this paper proposes a Feature Similarity Module (FSM), which combines the dense feature prediction ability of true labels for unlabeled images with segmentation features as additional constraints, utilizing the similarity relationship between dense features to constrain segmentation features, and thus fully exploiting the dense feature information of unlabeled data. Additionally, the Reliable-region Enhancement Module (REM) designs a high-confidence network structure by fusing two networks that can learn from each other, forming a triple-network structure. The high-confidence network generates reliable pseudo-labels that further constrain the predictions of the two networks, achieving the goal of enhancing the weight of reliable regions, reducing the noise interference of pseudo-labels, and efficiently utilizing all pseudo-label information. Experimental results on the ACDC and LA datasets demonstrate that the FSRENet model proposed in this paper excels in the task of semi-supervised semantic segmentation of medical images and outperforms the majority of existing methods. Our code is available at: https://github.com/gdghds0/FSRENet-master.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
9秒前
大晨发布了新的文献求助10
13秒前
lili发布了新的文献求助10
13秒前
19秒前
lili完成签到,获得积分20
34秒前
cc完成签到,获得积分10
36秒前
1分钟前
海绵宝宝完成签到 ,获得积分10
1分钟前
Jasper应助阳光的星月采纳,获得10
1分钟前
TXZ06完成签到,获得积分10
2分钟前
科研通AI6应助科研通管家采纳,获得10
2分钟前
打打应助朴素海亦采纳,获得10
2分钟前
方汀应助朴素海亦采纳,获得10
2分钟前
3分钟前
dd完成签到,获得积分10
3分钟前
3分钟前
开朗大雁完成签到 ,获得积分10
4分钟前
香蕉觅云应助科研通管家采纳,获得10
4分钟前
荷兰香猪完成签到,获得积分10
4分钟前
4分钟前
4分钟前
阳光的星月完成签到,获得积分10
4分钟前
研友_8RyzBZ完成签到,获得积分20
4分钟前
4分钟前
4分钟前
huahuaaixuexi完成签到,获得积分10
4分钟前
4分钟前
情怀应助成成鹅了采纳,获得10
4分钟前
苗龙伟完成签到 ,获得积分10
4分钟前
dd发布了新的文献求助200
5分钟前
852应助成成鹅了采纳,获得30
5分钟前
林妹妹完成签到 ,获得积分10
5分钟前
zsmj23完成签到 ,获得积分0
5分钟前
5分钟前
冷酷的如松完成签到,获得积分10
5分钟前
5分钟前
成成鹅了发布了新的文献求助10
5分钟前
5分钟前
5分钟前
丘比特应助科研通管家采纳,获得30
6分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
《药学类医疗服务价格项目立项指南(征求意见稿)》 1000
The Political Psychology of Citizens in Rising China 600
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5634903
求助须知:如何正确求助?哪些是违规求助? 4734139
关于积分的说明 14989445
捐赠科研通 4792634
什么是DOI,文献DOI怎么找? 2559723
邀请新用户注册赠送积分活动 1520035
关于科研通互助平台的介绍 1480107