Semi-supervised medical image segmentation via feature similarity and reliable-region enhancement

分割 计算机科学 人工智能 特征(语言学) 相似性(几何) 模式识别(心理学) 尺度空间分割 图像分割 任务(项目管理) 基于分割的对象分类 注释 图像(数学) 哲学 语言学 管理 经济
作者
Jianwu Long,Chengxin Yang,Yan Ren,Ziqin Zeng
出处
期刊:Computers in Biology and Medicine [Elsevier BV]
卷期号:167: 107668-107668 被引量:1
标识
DOI:10.1016/j.compbiomed.2023.107668
摘要

Semantic segmentation is a crucial task in the field of computer vision, and medical image segmentation, as its downstream task, has made significant breakthroughs in recent years. However, the issue of requiring a large number of annotations in medical image segmentation has remained a major challenge. Semi-supervised semantic segmentation has provided a powerful approach to address the annotation problem. Nevertheless, existing semi-supervised semantic segmentation methods in medical images have drawbacks, such as insufficient exploitation of unlabeled data information and inefficient utilization of all pseudo-label information. We introduces a novel segmentation model, the Feature Similarity and Reliable-region Enhancement Network (FSRENet), to overcome these limitations. Firstly, this paper proposes a Feature Similarity Module (FSM), which combines the dense feature prediction ability of true labels for unlabeled images with segmentation features as additional constraints, utilizing the similarity relationship between dense features to constrain segmentation features, and thus fully exploiting the dense feature information of unlabeled data. Additionally, the Reliable-region Enhancement Module (REM) designs a high-confidence network structure by fusing two networks that can learn from each other, forming a triple-network structure. The high-confidence network generates reliable pseudo-labels that further constrain the predictions of the two networks, achieving the goal of enhancing the weight of reliable regions, reducing the noise interference of pseudo-labels, and efficiently utilizing all pseudo-label information. Experimental results on the ACDC and LA datasets demonstrate that the FSRENet model proposed in this paper excels in the task of semi-supervised semantic segmentation of medical images and outperforms the majority of existing methods. Our code is available at: https://github.com/gdghds0/FSRENet-master.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
从心完成签到,获得积分10
4秒前
xxxhhh完成签到,获得积分20
5秒前
5秒前
6秒前
Yangyang完成签到,获得积分10
6秒前
6秒前
丘比特应助小白采纳,获得10
7秒前
嗯哼发布了新的文献求助10
9秒前
xxxhhh发布了新的文献求助10
9秒前
慕青应助ZLX采纳,获得30
10秒前
12秒前
copycat关注了科研通微信公众号
12秒前
enchanted发布了新的文献求助10
13秒前
可靠觅珍应助123采纳,获得10
13秒前
李爱国应助嗯哼采纳,获得10
13秒前
桐桐应助嗯哼采纳,获得10
13秒前
14秒前
15秒前
汉堡包应助可可采纳,获得10
16秒前
zaza发布了新的文献求助10
17秒前
小小超发布了新的文献求助10
17秒前
大个应助will采纳,获得10
20秒前
21秒前
MS903发布了新的文献求助10
21秒前
科研通AI2S应助冷酷的树叶采纳,获得30
21秒前
万能图书馆应助潮哈哈耶采纳,获得10
21秒前
22秒前
23秒前
24秒前
saisai发布了新的文献求助20
26秒前
27秒前
蔡从安发布了新的文献求助10
27秒前
27秒前
脑洞疼应助koi采纳,获得10
28秒前
28秒前
31秒前
32秒前
34秒前
WD发布了新的文献求助10
35秒前
在水一方应助小小超采纳,获得30
35秒前
高分求助中
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3962406
求助须知:如何正确求助?哪些是违规求助? 3508495
关于积分的说明 11141362
捐赠科研通 3241248
什么是DOI,文献DOI怎么找? 1791412
邀请新用户注册赠送积分活动 872861
科研通“疑难数据库(出版商)”最低求助积分说明 803417