Semi-supervised medical image segmentation via feature similarity and reliable-region enhancement

分割 计算机科学 人工智能 特征(语言学) 相似性(几何) 模式识别(心理学) 尺度空间分割 图像分割 任务(项目管理) 基于分割的对象分类 注释 图像(数学) 语言学 哲学 经济 管理
作者
Jianwu Long,Chengxin Yang,Yan Ren,Ziqin Zeng
出处
期刊:Computers in Biology and Medicine [Elsevier]
卷期号:167: 107668-107668 被引量:1
标识
DOI:10.1016/j.compbiomed.2023.107668
摘要

Semantic segmentation is a crucial task in the field of computer vision, and medical image segmentation, as its downstream task, has made significant breakthroughs in recent years. However, the issue of requiring a large number of annotations in medical image segmentation has remained a major challenge. Semi-supervised semantic segmentation has provided a powerful approach to address the annotation problem. Nevertheless, existing semi-supervised semantic segmentation methods in medical images have drawbacks, such as insufficient exploitation of unlabeled data information and inefficient utilization of all pseudo-label information. We introduces a novel segmentation model, the Feature Similarity and Reliable-region Enhancement Network (FSRENet), to overcome these limitations. Firstly, this paper proposes a Feature Similarity Module (FSM), which combines the dense feature prediction ability of true labels for unlabeled images with segmentation features as additional constraints, utilizing the similarity relationship between dense features to constrain segmentation features, and thus fully exploiting the dense feature information of unlabeled data. Additionally, the Reliable-region Enhancement Module (REM) designs a high-confidence network structure by fusing two networks that can learn from each other, forming a triple-network structure. The high-confidence network generates reliable pseudo-labels that further constrain the predictions of the two networks, achieving the goal of enhancing the weight of reliable regions, reducing the noise interference of pseudo-labels, and efficiently utilizing all pseudo-label information. Experimental results on the ACDC and LA datasets demonstrate that the FSRENet model proposed in this paper excels in the task of semi-supervised semantic segmentation of medical images and outperforms the majority of existing methods. Our code is available at: https://github.com/gdghds0/FSRENet-master.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小蘑菇应助Ryan采纳,获得10
刚刚
研友_Z6QEAn完成签到 ,获得积分10
刚刚
Franklin完成签到,获得积分10
1秒前
LUJyyyy完成签到,获得积分10
1秒前
hjz发布了新的文献求助10
1秒前
数据删除发布了新的文献求助10
1秒前
努力完成签到 ,获得积分10
1秒前
2秒前
辣比小欣完成签到,获得积分10
3秒前
lucky发布了新的文献求助10
3秒前
李健应助不偷懒就无敌采纳,获得10
4秒前
4秒前
4秒前
Mira关注了科研通微信公众号
4秒前
溫蒂发布了新的文献求助10
4秒前
缥缈傥发布了新的文献求助10
5秒前
5秒前
cherish完成签到,获得积分10
5秒前
6秒前
7秒前
zxy完成签到 ,获得积分10
7秒前
科研通AI2S应助简qiu采纳,获得10
8秒前
8秒前
QLG发布了新的文献求助10
9秒前
9秒前
10秒前
qyw完成签到,获得积分10
10秒前
10秒前
小马甲应助寒月如雪采纳,获得10
10秒前
yhuyfuhk发布了新的文献求助10
11秒前
顾矜应助hexinyu采纳,获得10
12秒前
dayoud完成签到,获得积分10
12秒前
方乘风完成签到 ,获得积分10
12秒前
Ryan发布了新的文献求助10
12秒前
13秒前
13秒前
歪歪扣叉完成签到,获得积分10
14秒前
我是老大应助cl0928采纳,获得10
15秒前
华仔应助中森菜龙采纳,获得10
15秒前
开朗的绮山完成签到,获得积分10
17秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Effect of reactor temperature on FCC yield 2000
Very-high-order BVD Schemes Using β-variable THINC Method 1020
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
Mission to Mao: Us Intelligence and the Chinese Communists in World War II 600
The Conscience of the Party: Hu Yaobang, China’s Communist Reformer 600
Geochemistry, 2nd Edition 地球化学经典教科书第二版,不要epub版本 431
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3301341
求助须知:如何正确求助?哪些是违规求助? 2936061
关于积分的说明 8475819
捐赠科研通 2609853
什么是DOI,文献DOI怎么找? 1424856
科研通“疑难数据库(出版商)”最低求助积分说明 662191
邀请新用户注册赠送积分活动 646202