亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Intelligent detection on construction project contract missing clauses based on deep learning and NLP

计算机科学 施工合同 分类 人工智能 深度学习 自然语言处理 合同管理 业务 营销
作者
Hong Zhou,Binwei Gao,Shilong Tang,Bing Li,Shuyu Wang
出处
期刊:Engineering, Construction and Architectural Management [Emerald Publishing Limited]
被引量:3
标识
DOI:10.1108/ecam-02-2023-0172
摘要

Purpose The number of construction dispute cases has maintained a high growth trend in recent years. The effective exploration and management of construction contract risk can directly promote the overall performance of the project life cycle. The miss of clauses may result in a failure to match with standard contracts. If the contract, modified by the owner, omits key clauses, potential disputes may lead to contractors paying substantial compensation. Therefore, the identification of construction project contract missing clauses has heavily relied on the manual review technique, which is inefficient and highly restricted by personnel experience. The existing intelligent means only work for the contract query and storage. It is urgent to raise the level of intelligence for contract clause management. Therefore, this paper aims to propose an intelligent method to detect construction project contract missing clauses based on Natural Language Processing (NLP) and deep learning technology. Design/methodology/approach A complete classification scheme of contract clauses is designed based on NLP. First, construction contract texts are pre-processed and converted from unstructured natural language into structured digital vector form. Following the initial categorization, a multi-label classification of long text construction contract clauses is designed to preliminary identify whether the clause labels are missing. After the multi-label clause missing detection, the authors implement a clause similarity algorithm by creatively integrating the image detection thought, MatchPyramid model, with BERT to identify missing substantial content in the contract clauses. Findings 1,322 construction project contracts were tested. Results showed that the accuracy of multi-label classification could reach 93%, the accuracy of similarity matching can reach 83%, and the recall rate and F1 mean of both can reach more than 0.7. The experimental results verify the feasibility of intelligently detecting contract risk through the NLP-based method to some extent. Originality/value NLP is adept at recognizing textual content and has shown promising results in some contract processing applications. However, the mostly used approaches of its utilization for risk detection in construction contract clauses predominantly are rule-based, which encounter challenges when handling intricate and lengthy engineering contracts. This paper introduces an NLP technique based on deep learning which reduces manual intervention and can autonomously identify and tag types of contractual deficiencies, aligning with the evolving complexities anticipated in future construction contracts. Moreover, this method achieves the recognition of extended contract clause texts. Ultimately, this approach boasts versatility; users simply need to adjust parameters such as segmentation based on language categories to detect omissions in contract clauses of diverse languages.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
jinmuna完成签到,获得积分10
12秒前
李健的小迷弟应助芳芳采纳,获得10
15秒前
科研通AI2S应助头秃科研人采纳,获得10
18秒前
大模型应助zzz采纳,获得10
26秒前
cdercder应助头秃科研人采纳,获得20
31秒前
单薄的咖啡完成签到 ,获得积分10
32秒前
49秒前
优雅柏柳发布了新的文献求助10
54秒前
言辞完成签到,获得积分10
57秒前
57秒前
科研通AI5应助科研通管家采纳,获得10
58秒前
科研通AI5应助科研通管家采纳,获得10
58秒前
科研通AI5应助科研通管家采纳,获得10
58秒前
小二郎应助科研通管家采纳,获得10
58秒前
科研通AI5应助科研通管家采纳,获得10
58秒前
科研通AI5应助科研通管家采纳,获得30
58秒前
科研通AI5应助科研通管家采纳,获得10
58秒前
科研通AI5应助科研通管家采纳,获得10
58秒前
Nichols完成签到,获得积分10
1分钟前
小思完成签到 ,获得积分10
1分钟前
小蘑菇应助VDC采纳,获得10
1分钟前
薛之谦完成签到,获得积分10
1分钟前
1分钟前
哲别发布了新的文献求助200
1分钟前
小树苗发布了新的文献求助10
1分钟前
1分钟前
小树苗完成签到,获得积分20
1分钟前
VDC发布了新的文献求助10
1分钟前
有魅力强炫完成签到 ,获得积分10
1分钟前
江离完成签到 ,获得积分10
1分钟前
qqq完成签到,获得积分10
1分钟前
和谐面包完成签到,获得积分10
1分钟前
NexusExplorer应助哈哈采纳,获得10
1分钟前
1分钟前
ren发布了新的文献求助10
1分钟前
薇洛的打火机完成签到 ,获得积分10
1分钟前
大渣饼完成签到 ,获得积分10
1分钟前
研友_ZzrWKZ完成签到,获得积分10
2分钟前
Wxxxxx完成签到 ,获得积分10
2分钟前
tracyzhang完成签到 ,获得积分10
2分钟前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
The First Nuclear Era: The Life and Times of a Technological Fixer 500
岡本唐貴自伝的回想画集 500
Distinct Aggregation Behaviors and Rheological Responses of Two Terminally Functionalized Polyisoprenes with Different Quadruple Hydrogen Bonding Motifs 450
Ciprofol versus propofol for adult sedation in gastrointestinal endoscopic procedures: a systematic review and meta-analysis 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3671207
求助须知:如何正确求助?哪些是违规求助? 3228106
关于积分的说明 9778486
捐赠科研通 2938349
什么是DOI,文献DOI怎么找? 1609872
邀请新用户注册赠送积分活动 760478
科研通“疑难数据库(出版商)”最低求助积分说明 735990