亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Intelligent detection on construction project contract missing clauses based on deep learning and NLP

计算机科学 施工合同 分类 人工智能 深度学习 自然语言处理 合同管理 业务 营销
作者
Hong Zhou,Binwei Gao,Shilong Tang,Bing Li,Shuyu Wang
出处
期刊:Engineering, Construction and Architectural Management [Emerald (MCB UP)]
被引量:3
标识
DOI:10.1108/ecam-02-2023-0172
摘要

Purpose The number of construction dispute cases has maintained a high growth trend in recent years. The effective exploration and management of construction contract risk can directly promote the overall performance of the project life cycle. The miss of clauses may result in a failure to match with standard contracts. If the contract, modified by the owner, omits key clauses, potential disputes may lead to contractors paying substantial compensation. Therefore, the identification of construction project contract missing clauses has heavily relied on the manual review technique, which is inefficient and highly restricted by personnel experience. The existing intelligent means only work for the contract query and storage. It is urgent to raise the level of intelligence for contract clause management. Therefore, this paper aims to propose an intelligent method to detect construction project contract missing clauses based on Natural Language Processing (NLP) and deep learning technology. Design/methodology/approach A complete classification scheme of contract clauses is designed based on NLP. First, construction contract texts are pre-processed and converted from unstructured natural language into structured digital vector form. Following the initial categorization, a multi-label classification of long text construction contract clauses is designed to preliminary identify whether the clause labels are missing. After the multi-label clause missing detection, the authors implement a clause similarity algorithm by creatively integrating the image detection thought, MatchPyramid model, with BERT to identify missing substantial content in the contract clauses. Findings 1,322 construction project contracts were tested. Results showed that the accuracy of multi-label classification could reach 93%, the accuracy of similarity matching can reach 83%, and the recall rate and F1 mean of both can reach more than 0.7. The experimental results verify the feasibility of intelligently detecting contract risk through the NLP-based method to some extent. Originality/value NLP is adept at recognizing textual content and has shown promising results in some contract processing applications. However, the mostly used approaches of its utilization for risk detection in construction contract clauses predominantly are rule-based, which encounter challenges when handling intricate and lengthy engineering contracts. This paper introduces an NLP technique based on deep learning which reduces manual intervention and can autonomously identify and tag types of contractual deficiencies, aligning with the evolving complexities anticipated in future construction contracts. Moreover, this method achieves the recognition of extended contract clause texts. Ultimately, this approach boasts versatility; users simply need to adjust parameters such as segmentation based on language categories to detect omissions in contract clauses of diverse languages.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刘平平发布了新的文献求助10
1秒前
2213sss完成签到,获得积分10
18秒前
嗯哼应助十二月采纳,获得50
19秒前
端庄的如花完成签到 ,获得积分10
22秒前
30秒前
33秒前
诺诺完成签到 ,获得积分10
37秒前
Maru完成签到,获得积分20
1分钟前
香蕉觅云应助科研通管家采纳,获得10
1分钟前
凉初透完成签到,获得积分10
1分钟前
1分钟前
孤傲的静脉完成签到 ,获得积分10
1分钟前
缥缈嫣发布了新的文献求助10
1分钟前
sunshine发布了新的文献求助10
1分钟前
1分钟前
科研通AI2S应助大喵采纳,获得10
1分钟前
雪飞杨完成签到 ,获得积分10
1分钟前
852应助缥缈嫣采纳,获得10
1分钟前
2分钟前
lily完成签到,获得积分10
2分钟前
2分钟前
粥粥完成签到 ,获得积分10
2分钟前
老兵科研发布了新的文献求助10
2分钟前
机智向松完成签到,获得积分10
2分钟前
purplelove完成签到 ,获得积分10
2分钟前
情怀应助陶醉的蜜蜂采纳,获得10
2分钟前
2分钟前
HAPPY发布了新的文献求助10
2分钟前
2分钟前
HAPPY完成签到,获得积分10
2分钟前
2分钟前
柚子完成签到 ,获得积分10
3分钟前
科研通AI2S应助科研通管家采纳,获得10
3分钟前
嗯哼应助科研通管家采纳,获得10
3分钟前
科研通AI2S应助科研通管家采纳,获得10
3分钟前
嗯哼应助科研通管家采纳,获得10
3分钟前
香蕉觅云应助科研通管家采纳,获得10
3分钟前
科研通AI2S应助科研通管家采纳,获得10
3分钟前
脑洞疼应助缥缈嫣采纳,获得10
3分钟前
伶俐海安完成签到 ,获得积分10
3分钟前
高分求助中
歯科矯正学 第7版(或第5版) 1004
The late Devonian Standard Conodont Zonation 1000
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 1000
Smart but Scattered: The Revolutionary Executive Skills Approach to Helping Kids Reach Their Potential (第二版) 1000
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 700
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
Zeitschrift für Orient-Archäologie 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3238842
求助须知:如何正确求助?哪些是违规求助? 2884185
关于积分的说明 8232705
捐赠科研通 2552267
什么是DOI,文献DOI怎么找? 1380569
科研通“疑难数据库(出版商)”最低求助积分说明 649063
邀请新用户注册赠送积分活动 624754