Intelligent classification and analysis of regional landforms based on automatic feature selection

地形 地形地貌 特征选择 人工智能 特征(语言学) 计算机科学 可解释性 模式识别(心理学) 块(置换群论) 过程(计算) 数据挖掘 机器学习 地质学 地理 地图学 数学 地貌学 语言学 哲学 几何学 操作系统
作者
Yuexue Xu,Hongchun Zhu,Zhiwei Lu,Yanrui Yang,Guocan Zhu
出处
期刊:Earth Surface Processes and Landforms [Wiley]
卷期号:49 (2): 787-803 被引量:6
标识
DOI:10.1002/esp.5737
摘要

Abstract Terrain features are an important basis for realizing high‐precision landform classification, and feature selection is a key step of machine learning and knowledge mining. However, the feature selection process is facing challenges due to the multidimensionality and correlation of multisource terrain feature datasets and factors. Traditional feature selection methods lack enough consideration for the interpretability and transparency of feature factors, but the transparent decision‐making process of feature selection precisely determines the modelling effect and the reliability of model application results. Current research urgently needs to work out the black holes of visual representation during feature selection. In the process of intelligent landform classification, multiple and effective terrain feature is an essential factor in enhancing the performance and generalisation ability of the network. Therefore, we initially selected 40 terrain feature parameters, including basic terrain factors and digital elevation model (DEM) terrain textures, to calculate the feature contribution degree and sort the parameter importance based on the SHapley Additive exPlanations (SHAP) method, then reserved 10%, 20%, 30%, 40% and 50% terrain features in turn for constructing the landform classification dataset. Because the traditional UNet network cannot completely capture abrupt landform features, the convolutional block attention module (CBAM) was integrated into the UNet, and a deep learning model was established for the fine‐grained classification of regional landforms. Considering the calculation rate, even though there are large regional spatial differences and genetic mechanisms, it is appropriate to retain 20% of terrain features for intelligent landform classification. The classification accuracy of typical regions, namely, the Hanzhong Basin, North China Plain, Yunnan–Guizhou Plateau and Tibetan Plateau, reached 98.76%, 97.36%, 96.3% and 92.78%, respectively, and what's more, some accuracies went up to a higher level under other feature combinations. Meanwhile, given the different feature combinations corresponding to regional landform types, the combinative stability and spatial orderliness characteristics were explored to explain the accuracy variation trend.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Lize完成签到,获得积分10
刚刚
希与发布了新的文献求助10
刚刚
nn发布了新的文献求助10
刚刚
领导范儿应助1820采纳,获得10
1秒前
1秒前
sasa发布了新的文献求助10
1秒前
2秒前
柒玉染完成签到,获得积分10
3秒前
呜呜完成签到,获得积分10
3秒前
3秒前
风清扬发布了新的文献求助10
4秒前
4秒前
CipherSage应助Robin采纳,获得10
4秒前
我爱学习完成签到,获得积分10
5秒前
5秒前
5秒前
木木木完成签到,获得积分10
6秒前
sy完成签到,获得积分10
6秒前
科研通AI6应助子车凡采纳,获得10
6秒前
痴情的白易完成签到 ,获得积分20
7秒前
解解闷发布了新的文献求助10
7秒前
fufufu123完成签到 ,获得积分10
8秒前
量子星尘发布了新的文献求助10
8秒前
微笑的觅夏完成签到 ,获得积分10
8秒前
锅包又完成签到 ,获得积分10
9秒前
李健应助ZZQQ采纳,获得10
9秒前
刘丰铭发布了新的文献求助10
9秒前
9秒前
9秒前
柒玉染发布了新的文献求助10
10秒前
kqkqkqkqkq完成签到,获得积分20
11秒前
阿美完成签到,获得积分10
11秒前
YaRu发布了新的文献求助10
13秒前
13秒前
1820发布了新的文献求助10
14秒前
14秒前
dtcao发布了新的文献求助10
15秒前
15秒前
HuiYmao发布了新的文献求助10
15秒前
华仔应助张瑜采纳,获得10
15秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Basic And Clinical Science Course 2025-2026 3000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
人脑智能与人工智能 1000
花の香りの秘密―遺伝子情報から機能性まで 800
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
Pharmacology for Chemists: Drug Discovery in Context 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5608292
求助须知:如何正确求助?哪些是违规求助? 4692876
关于积分的说明 14875899
捐赠科研通 4717214
什么是DOI,文献DOI怎么找? 2544162
邀请新用户注册赠送积分活动 1509147
关于科研通互助平台的介绍 1472809