亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Intelligent classification and analysis of regional landforms based on automatic feature selection

地形 地形地貌 特征选择 人工智能 特征(语言学) 计算机科学 可解释性 模式识别(心理学) 块(置换群论) 过程(计算) 数据挖掘 机器学习 地质学 地理 地图学 数学 地貌学 语言学 哲学 几何学 操作系统
作者
Yuexue Xu,Hongchun Zhu,Zhiwei Lu,Yanrui Yang,Guocan Zhu
出处
期刊:Earth Surface Processes and Landforms [Wiley]
卷期号:49 (2): 787-803 被引量:6
标识
DOI:10.1002/esp.5737
摘要

Abstract Terrain features are an important basis for realizing high‐precision landform classification, and feature selection is a key step of machine learning and knowledge mining. However, the feature selection process is facing challenges due to the multidimensionality and correlation of multisource terrain feature datasets and factors. Traditional feature selection methods lack enough consideration for the interpretability and transparency of feature factors, but the transparent decision‐making process of feature selection precisely determines the modelling effect and the reliability of model application results. Current research urgently needs to work out the black holes of visual representation during feature selection. In the process of intelligent landform classification, multiple and effective terrain feature is an essential factor in enhancing the performance and generalisation ability of the network. Therefore, we initially selected 40 terrain feature parameters, including basic terrain factors and digital elevation model (DEM) terrain textures, to calculate the feature contribution degree and sort the parameter importance based on the SHapley Additive exPlanations (SHAP) method, then reserved 10%, 20%, 30%, 40% and 50% terrain features in turn for constructing the landform classification dataset. Because the traditional UNet network cannot completely capture abrupt landform features, the convolutional block attention module (CBAM) was integrated into the UNet, and a deep learning model was established for the fine‐grained classification of regional landforms. Considering the calculation rate, even though there are large regional spatial differences and genetic mechanisms, it is appropriate to retain 20% of terrain features for intelligent landform classification. The classification accuracy of typical regions, namely, the Hanzhong Basin, North China Plain, Yunnan–Guizhou Plateau and Tibetan Plateau, reached 98.76%, 97.36%, 96.3% and 92.78%, respectively, and what's more, some accuracies went up to a higher level under other feature combinations. Meanwhile, given the different feature combinations corresponding to regional landform types, the combinative stability and spatial orderliness characteristics were explored to explain the accuracy variation trend.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小周周完成签到,获得积分10
1秒前
魁梧的衫完成签到 ,获得积分10
2秒前
Zero完成签到,获得积分10
3秒前
子苇完成签到,获得积分10
3秒前
Mei完成签到,获得积分10
9秒前
10秒前
宝宝熊的熊宝宝完成签到,获得积分10
20秒前
OeO完成签到 ,获得积分10
20秒前
meow完成签到 ,获得积分10
20秒前
小二郎应助超级月饼采纳,获得10
24秒前
赛猪完成签到,获得积分10
35秒前
Lily完成签到 ,获得积分10
46秒前
scc完成签到,获得积分10
46秒前
Gudeguy完成签到 ,获得积分10
53秒前
12369完成签到,获得积分10
1分钟前
默笙完成签到 ,获得积分10
1分钟前
烟花应助nnn采纳,获得10
1分钟前
冷漠的馄饨完成签到 ,获得积分10
1分钟前
1分钟前
小王爱看文献完成签到 ,获得积分10
1分钟前
002完成签到,获得积分10
1分钟前
ppg123应助科研通管家采纳,获得10
1分钟前
领导范儿应助科研通管家采纳,获得10
1分钟前
ppg123应助科研通管家采纳,获得10
1分钟前
ppg123应助科研通管家采纳,获得10
1分钟前
ppg123应助科研通管家采纳,获得10
1分钟前
ppg123应助科研通管家采纳,获得10
1分钟前
英姑应助科研通管家采纳,获得10
1分钟前
ppg123应助科研通管家采纳,获得10
1分钟前
ppg123应助科研通管家采纳,获得10
1分钟前
dong应助科研通管家采纳,获得10
1分钟前
CipherSage应助科研通管家采纳,获得10
1分钟前
scanker1981完成签到,获得积分10
1分钟前
hxh发布了新的文献求助10
1分钟前
啦啦啦啦发布了新的文献求助10
1分钟前
1分钟前
12369发布了新的文献求助10
1分钟前
魔幻的盼芙完成签到 ,获得积分10
1分钟前
1分钟前
cy0824完成签到 ,获得积分10
1分钟前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Social Research Methods (4th Edition) by Maggie Walter (2019) 1030
A new approach to the extrapolation of accelerated life test data 1000
Indomethacinのヒトにおける経皮吸収 400
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 370
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3994889
求助须知:如何正确求助?哪些是违规求助? 3535040
关于积分的说明 11267040
捐赠科研通 3274842
什么是DOI,文献DOI怎么找? 1806478
邀请新用户注册赠送积分活动 883335
科研通“疑难数据库(出版商)”最低求助积分说明 809762