Intelligent classification and analysis of regional landforms based on automatic feature selection

地形 地形地貌 特征选择 人工智能 特征(语言学) 计算机科学 可解释性 模式识别(心理学) 块(置换群论) 过程(计算) 数据挖掘 机器学习 地质学 地理 地图学 数学 地貌学 语言学 哲学 几何学 操作系统
作者
Yuexue Xu,Hongchun Zhu,Zhiwei Lu,Yanrui Yang,Guocan Zhu
出处
期刊:Earth Surface Processes and Landforms [Wiley]
卷期号:49 (2): 787-803 被引量:6
标识
DOI:10.1002/esp.5737
摘要

Abstract Terrain features are an important basis for realizing high‐precision landform classification, and feature selection is a key step of machine learning and knowledge mining. However, the feature selection process is facing challenges due to the multidimensionality and correlation of multisource terrain feature datasets and factors. Traditional feature selection methods lack enough consideration for the interpretability and transparency of feature factors, but the transparent decision‐making process of feature selection precisely determines the modelling effect and the reliability of model application results. Current research urgently needs to work out the black holes of visual representation during feature selection. In the process of intelligent landform classification, multiple and effective terrain feature is an essential factor in enhancing the performance and generalisation ability of the network. Therefore, we initially selected 40 terrain feature parameters, including basic terrain factors and digital elevation model (DEM) terrain textures, to calculate the feature contribution degree and sort the parameter importance based on the SHapley Additive exPlanations (SHAP) method, then reserved 10%, 20%, 30%, 40% and 50% terrain features in turn for constructing the landform classification dataset. Because the traditional UNet network cannot completely capture abrupt landform features, the convolutional block attention module (CBAM) was integrated into the UNet, and a deep learning model was established for the fine‐grained classification of regional landforms. Considering the calculation rate, even though there are large regional spatial differences and genetic mechanisms, it is appropriate to retain 20% of terrain features for intelligent landform classification. The classification accuracy of typical regions, namely, the Hanzhong Basin, North China Plain, Yunnan–Guizhou Plateau and Tibetan Plateau, reached 98.76%, 97.36%, 96.3% and 92.78%, respectively, and what's more, some accuracies went up to a higher level under other feature combinations. Meanwhile, given the different feature combinations corresponding to regional landform types, the combinative stability and spatial orderliness characteristics were explored to explain the accuracy variation trend.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
诗图发布了新的文献求助10
1秒前
林惊语完成签到 ,获得积分10
1秒前
2秒前
3秒前
粗心的店员应助pophoo采纳,获得10
5秒前
zuoyanwin完成签到,获得积分10
6秒前
dadad发布了新的文献求助10
6秒前
ding应助李明采纳,获得10
7秒前
8秒前
张张完成签到,获得积分10
9秒前
菜籽油完成签到,获得积分10
10秒前
张张发布了新的文献求助10
12秒前
迷你的无剑完成签到 ,获得积分10
13秒前
轻松峻熙完成签到,获得积分10
18秒前
Virtual应助七月流火采纳,获得50
19秒前
怡心亭完成签到 ,获得积分10
21秒前
24秒前
勾勾歪完成签到,获得积分20
26秒前
26秒前
丘比特应助罗浙星采纳,获得10
28秒前
29秒前
30秒前
林琳完成签到,获得积分10
31秒前
风吹而过完成签到 ,获得积分10
31秒前
31秒前
佰斯特威应助虫子采纳,获得10
33秒前
37秒前
耶啵发布了新的文献求助10
38秒前
38秒前
浮游应助陆漫采纳,获得10
49秒前
陶嘉云完成签到,获得积分10
50秒前
50秒前
51秒前
柳亦诚应助TANG采纳,获得10
53秒前
53秒前
54秒前
南国之霄发布了新的文献求助10
55秒前
56秒前
刘华银完成签到,获得积分10
56秒前
Yvan完成签到,获得积分10
56秒前
高分求助中
(应助此贴封号)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
Determination of the boron concentration in diamond using optical spectroscopy 600
The Netter Collection of Medical Illustrations: Digestive System, Volume 9, Part III - Liver, Biliary Tract, and Pancreas (3rd Edition) 600
Founding Fathers The Shaping of America 500
A new house rat (Mammalia: Rodentia: Muridae) from the Andaman and Nicobar Islands 500
2025-2031全球及中国蛋黄lgY抗体行业研究及十五五规划分析报告(2025-2031 Global and China Chicken lgY Antibody Industry Research and 15th Five Year Plan Analysis Report) 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4537250
求助须知:如何正确求助?哪些是违规求助? 3972236
关于积分的说明 12305634
捐赠科研通 3638980
什么是DOI,文献DOI怎么找? 2003582
邀请新用户注册赠送积分活动 1038941
科研通“疑难数据库(出版商)”最低求助积分说明 928383