Intelligent classification and analysis of regional landforms based on automatic feature selection

地形 地形地貌 特征选择 人工智能 特征(语言学) 计算机科学 可解释性 模式识别(心理学) 块(置换群论) 过程(计算) 数据挖掘 机器学习 地质学 地理 地图学 数学 地貌学 语言学 哲学 几何学 操作系统
作者
Yuexue Xu,Hongchun Zhu,Zhiwei Lu,Yanrui Yang,Guocan Zhu
出处
期刊:Earth Surface Processes and Landforms [Wiley]
卷期号:49 (2): 787-803 被引量:6
标识
DOI:10.1002/esp.5737
摘要

Abstract Terrain features are an important basis for realizing high‐precision landform classification, and feature selection is a key step of machine learning and knowledge mining. However, the feature selection process is facing challenges due to the multidimensionality and correlation of multisource terrain feature datasets and factors. Traditional feature selection methods lack enough consideration for the interpretability and transparency of feature factors, but the transparent decision‐making process of feature selection precisely determines the modelling effect and the reliability of model application results. Current research urgently needs to work out the black holes of visual representation during feature selection. In the process of intelligent landform classification, multiple and effective terrain feature is an essential factor in enhancing the performance and generalisation ability of the network. Therefore, we initially selected 40 terrain feature parameters, including basic terrain factors and digital elevation model (DEM) terrain textures, to calculate the feature contribution degree and sort the parameter importance based on the SHapley Additive exPlanations (SHAP) method, then reserved 10%, 20%, 30%, 40% and 50% terrain features in turn for constructing the landform classification dataset. Because the traditional UNet network cannot completely capture abrupt landform features, the convolutional block attention module (CBAM) was integrated into the UNet, and a deep learning model was established for the fine‐grained classification of regional landforms. Considering the calculation rate, even though there are large regional spatial differences and genetic mechanisms, it is appropriate to retain 20% of terrain features for intelligent landform classification. The classification accuracy of typical regions, namely, the Hanzhong Basin, North China Plain, Yunnan–Guizhou Plateau and Tibetan Plateau, reached 98.76%, 97.36%, 96.3% and 92.78%, respectively, and what's more, some accuracies went up to a higher level under other feature combinations. Meanwhile, given the different feature combinations corresponding to regional landform types, the combinative stability and spatial orderliness characteristics were explored to explain the accuracy variation trend.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
tianyi19完成签到,获得积分10
刚刚
Ninico发布了新的文献求助10
刚刚
zl完成签到,获得积分20
1秒前
七省总督发布了新的文献求助30
1秒前
Lucas应助xcchh采纳,获得10
1秒前
wzx发布了新的文献求助20
1秒前
小蘑菇应助图图采纳,获得10
2秒前
伶俐灵发布了新的文献求助10
2秒前
小李呀发布了新的文献求助10
4秒前
4秒前
4秒前
5秒前
伤逝发布了新的文献求助100
5秒前
桐桐应助zl采纳,获得10
6秒前
李某人发布了新的文献求助10
7秒前
15884134873完成签到,获得积分10
7秒前
chi1发布了新的文献求助10
8秒前
万能图书馆应助孟繁荣采纳,获得10
8秒前
伶俐灵完成签到,获得积分20
8秒前
淡淡翠安发布了新的文献求助10
9秒前
10秒前
10秒前
香菜发布了新的文献求助10
10秒前
可爱的函函应助小张采纳,获得10
10秒前
打打应助lishi采纳,获得10
12秒前
隐形曼青应助曾阿牛采纳,获得10
13秒前
13秒前
13秒前
13秒前
纸飞机完成签到,获得积分20
14秒前
14秒前
邵钰博发布了新的文献求助10
15秒前
15秒前
16秒前
LX发布了新的文献求助20
16秒前
夜行完成签到,获得积分10
17秒前
17秒前
LiuYang完成签到,获得积分10
17秒前
Ninico完成签到,获得积分10
17秒前
17秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
SOFT MATTER SERIES Volume 22 Soft Matter in Foods 1000
Zur lokalen Geoidbestimmung aus terrestrischen Messungen vertikaler Schweregradienten 1000
Schifanoia : notizie dell'istituto di studi rinascimentali di Ferrara : 66/67, 1/2, 2024 1000
Circulating tumor DNA from blood and cerebrospinal fluid in DLBCL: simultaneous evaluation of mutations, IG rearrangement, and IG clonality 500
Food Microbiology - An Introduction (5th Edition) 500
Architectural Corrosion and Critical Infrastructure 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4866661
求助须知:如何正确求助?哪些是违规求助? 4158876
关于积分的说明 12895883
捐赠科研通 3912952
什么是DOI,文献DOI怎么找? 2149046
邀请新用户注册赠送积分活动 1167631
关于科研通互助平台的介绍 1070002