亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Intelligent classification and analysis of regional landforms based on automatic feature selection

地形 地形地貌 特征选择 人工智能 特征(语言学) 计算机科学 可解释性 模式识别(心理学) 块(置换群论) 过程(计算) 数据挖掘 机器学习 地质学 地理 地图学 数学 地貌学 语言学 哲学 几何学 操作系统
作者
Yuexue Xu,Hongchun Zhu,Zhiwei Lu,Yanrui Yang,Guocan Zhu
出处
期刊:Earth Surface Processes and Landforms [Wiley]
卷期号:49 (2): 787-803 被引量:6
标识
DOI:10.1002/esp.5737
摘要

Abstract Terrain features are an important basis for realizing high‐precision landform classification, and feature selection is a key step of machine learning and knowledge mining. However, the feature selection process is facing challenges due to the multidimensionality and correlation of multisource terrain feature datasets and factors. Traditional feature selection methods lack enough consideration for the interpretability and transparency of feature factors, but the transparent decision‐making process of feature selection precisely determines the modelling effect and the reliability of model application results. Current research urgently needs to work out the black holes of visual representation during feature selection. In the process of intelligent landform classification, multiple and effective terrain feature is an essential factor in enhancing the performance and generalisation ability of the network. Therefore, we initially selected 40 terrain feature parameters, including basic terrain factors and digital elevation model (DEM) terrain textures, to calculate the feature contribution degree and sort the parameter importance based on the SHapley Additive exPlanations (SHAP) method, then reserved 10%, 20%, 30%, 40% and 50% terrain features in turn for constructing the landform classification dataset. Because the traditional UNet network cannot completely capture abrupt landform features, the convolutional block attention module (CBAM) was integrated into the UNet, and a deep learning model was established for the fine‐grained classification of regional landforms. Considering the calculation rate, even though there are large regional spatial differences and genetic mechanisms, it is appropriate to retain 20% of terrain features for intelligent landform classification. The classification accuracy of typical regions, namely, the Hanzhong Basin, North China Plain, Yunnan–Guizhou Plateau and Tibetan Plateau, reached 98.76%, 97.36%, 96.3% and 92.78%, respectively, and what's more, some accuracies went up to a higher level under other feature combinations. Meanwhile, given the different feature combinations corresponding to regional landform types, the combinative stability and spatial orderliness characteristics were explored to explain the accuracy variation trend.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ding应助邓润杰采纳,获得10
刚刚
稳重白猫完成签到 ,获得积分10
1秒前
sweet完成签到 ,获得积分10
3秒前
李爱国应助邓润杰采纳,获得10
11秒前
数理化完成签到 ,获得积分10
11秒前
DBP87弹完成签到 ,获得积分10
17秒前
22秒前
科目三应助傻傻的修洁采纳,获得30
24秒前
情怀应助邓润杰采纳,获得10
32秒前
40秒前
科研通AI6应助邓润杰采纳,获得10
43秒前
FashionBoy应助傻傻的修洁采纳,获得10
45秒前
情怀应助Radiance采纳,获得10
49秒前
wangxw完成签到,获得积分10
50秒前
52秒前
科研通AI2S应助傻傻的修洁采纳,获得10
52秒前
1033524682发布了新的文献求助30
56秒前
56秒前
neao完成签到 ,获得积分10
59秒前
Lucas应助邓润杰采纳,获得10
1分钟前
Radiance发布了新的文献求助10
1分钟前
Ava应助傻傻的修洁采纳,获得10
1分钟前
Radiance完成签到,获得积分10
1分钟前
ceeray23发布了新的文献求助20
1分钟前
丘比特应助邓润杰采纳,获得10
1分钟前
1033524682完成签到,获得积分10
1分钟前
成就觅海完成签到 ,获得积分10
1分钟前
窝不想写论文完成签到 ,获得积分10
1分钟前
1分钟前
1分钟前
科研通AI6应助Li采纳,获得50
1分钟前
小马甲应助君寻采纳,获得10
1分钟前
1分钟前
1分钟前
1分钟前
传奇3应助邓润杰采纳,获得10
1分钟前
sandy发布了新的文献求助10
1分钟前
科研通AI6应助MIMI采纳,获得10
1分钟前
科研通AI6应助邓润杰采纳,获得10
1分钟前
在水一方应助傻傻的修洁采纳,获得10
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
Metagames: Games about Games 700
King Tyrant 640
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5573375
求助须知:如何正确求助?哪些是违规求助? 4659430
关于积分的说明 14724583
捐赠科研通 4599297
什么是DOI,文献DOI怎么找? 2524247
邀请新用户注册赠送积分活动 1494711
关于科研通互助平台的介绍 1464737