Intelligent classification and analysis of regional landforms based on automatic feature selection

地形 地形地貌 特征选择 人工智能 特征(语言学) 计算机科学 可解释性 模式识别(心理学) 块(置换群论) 过程(计算) 数据挖掘 机器学习 地质学 地理 地图学 数学 地貌学 语言学 哲学 几何学 操作系统
作者
Yuexue Xu,Hongchun Zhu,Zhiwei Lu,Yanrui Yang,Guocan Zhu
出处
期刊:Earth Surface Processes and Landforms [Wiley]
卷期号:49 (2): 787-803 被引量:6
标识
DOI:10.1002/esp.5737
摘要

Abstract Terrain features are an important basis for realizing high‐precision landform classification, and feature selection is a key step of machine learning and knowledge mining. However, the feature selection process is facing challenges due to the multidimensionality and correlation of multisource terrain feature datasets and factors. Traditional feature selection methods lack enough consideration for the interpretability and transparency of feature factors, but the transparent decision‐making process of feature selection precisely determines the modelling effect and the reliability of model application results. Current research urgently needs to work out the black holes of visual representation during feature selection. In the process of intelligent landform classification, multiple and effective terrain feature is an essential factor in enhancing the performance and generalisation ability of the network. Therefore, we initially selected 40 terrain feature parameters, including basic terrain factors and digital elevation model (DEM) terrain textures, to calculate the feature contribution degree and sort the parameter importance based on the SHapley Additive exPlanations (SHAP) method, then reserved 10%, 20%, 30%, 40% and 50% terrain features in turn for constructing the landform classification dataset. Because the traditional UNet network cannot completely capture abrupt landform features, the convolutional block attention module (CBAM) was integrated into the UNet, and a deep learning model was established for the fine‐grained classification of regional landforms. Considering the calculation rate, even though there are large regional spatial differences and genetic mechanisms, it is appropriate to retain 20% of terrain features for intelligent landform classification. The classification accuracy of typical regions, namely, the Hanzhong Basin, North China Plain, Yunnan–Guizhou Plateau and Tibetan Plateau, reached 98.76%, 97.36%, 96.3% and 92.78%, respectively, and what's more, some accuracies went up to a higher level under other feature combinations. Meanwhile, given the different feature combinations corresponding to regional landform types, the combinative stability and spatial orderliness characteristics were explored to explain the accuracy variation trend.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
wwwww完成签到,获得积分10
1秒前
不做科研废物完成签到,获得积分10
2秒前
mycishere发布了新的文献求助10
3秒前
3秒前
吱哦周发布了新的文献求助10
3秒前
小文发布了新的文献求助10
4秒前
4秒前
Buster发布了新的文献求助10
5秒前
5秒前
科研通AI2S应助王稀松采纳,获得10
7秒前
8秒前
公园人完成签到,获得积分20
10秒前
淇淇发布了新的文献求助10
10秒前
胡思发布了新的文献求助10
11秒前
慕青应助juziyaya采纳,获得10
13秒前
YY发布了新的文献求助10
13秒前
Hello应助贺飞风采纳,获得10
13秒前
wwwww发布了新的文献求助30
13秒前
今后应助lsk采纳,获得10
13秒前
14秒前
小疯狗完成签到,获得积分10
17秒前
19秒前
cxy发布了新的文献求助10
19秒前
21秒前
22秒前
24秒前
xiongyue发布了新的文献求助10
24秒前
24秒前
25秒前
科研通AI2S应助王稀松采纳,获得10
26秒前
山哥完成签到,获得积分10
26秒前
26秒前
26秒前
26秒前
27秒前
狗妹那塞发布了新的文献求助10
27秒前
李健应助hz采纳,获得10
28秒前
卓梨完成签到 ,获得积分10
28秒前
山哥发布了新的文献求助10
30秒前
高分求助中
The Oxford Handbook of Social Cognition (Second Edition, 2024) 1050
Kinetics of the Esterification Between 2-[(4-hydroxybutoxy)carbonyl] Benzoic Acid with 1,4-Butanediol: Tetrabutyl Orthotitanate as Catalyst 1000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Chen Hansheng: China’s Last Romantic Revolutionary 500
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3140965
求助须知:如何正确求助?哪些是违规求助? 2791902
关于积分的说明 7800851
捐赠科研通 2448159
什么是DOI,文献DOI怎么找? 1302441
科研通“疑难数据库(出版商)”最低求助积分说明 626568
版权声明 601226