Intelligent classification and analysis of regional landforms based on automatic feature selection

地形 地形地貌 特征选择 人工智能 特征(语言学) 计算机科学 可解释性 模式识别(心理学) 块(置换群论) 过程(计算) 数据挖掘 机器学习 地质学 地理 地图学 数学 地貌学 哲学 几何学 操作系统 语言学
作者
Yuexue Xu,Hongchun Zhu,Zhiwei Lu,Yanrui Yang,Guocan Zhu
出处
期刊:Earth Surface Processes and Landforms [Wiley]
卷期号:49 (2): 787-803 被引量:6
标识
DOI:10.1002/esp.5737
摘要

Abstract Terrain features are an important basis for realizing high‐precision landform classification, and feature selection is a key step of machine learning and knowledge mining. However, the feature selection process is facing challenges due to the multidimensionality and correlation of multisource terrain feature datasets and factors. Traditional feature selection methods lack enough consideration for the interpretability and transparency of feature factors, but the transparent decision‐making process of feature selection precisely determines the modelling effect and the reliability of model application results. Current research urgently needs to work out the black holes of visual representation during feature selection. In the process of intelligent landform classification, multiple and effective terrain feature is an essential factor in enhancing the performance and generalisation ability of the network. Therefore, we initially selected 40 terrain feature parameters, including basic terrain factors and digital elevation model (DEM) terrain textures, to calculate the feature contribution degree and sort the parameter importance based on the SHapley Additive exPlanations (SHAP) method, then reserved 10%, 20%, 30%, 40% and 50% terrain features in turn for constructing the landform classification dataset. Because the traditional UNet network cannot completely capture abrupt landform features, the convolutional block attention module (CBAM) was integrated into the UNet, and a deep learning model was established for the fine‐grained classification of regional landforms. Considering the calculation rate, even though there are large regional spatial differences and genetic mechanisms, it is appropriate to retain 20% of terrain features for intelligent landform classification. The classification accuracy of typical regions, namely, the Hanzhong Basin, North China Plain, Yunnan–Guizhou Plateau and Tibetan Plateau, reached 98.76%, 97.36%, 96.3% and 92.78%, respectively, and what's more, some accuracies went up to a higher level under other feature combinations. Meanwhile, given the different feature combinations corresponding to regional landform types, the combinative stability and spatial orderliness characteristics were explored to explain the accuracy variation trend.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
破碎时间完成签到 ,获得积分10
1秒前
JustinLiu完成签到,获得积分10
1秒前
2秒前
眼睛大的碧凡完成签到,获得积分10
3秒前
岳阳张震岳完成签到,获得积分10
5秒前
6秒前
田様应助雪落长安里采纳,获得10
6秒前
7秒前
yiyi完成签到,获得积分10
8秒前
汪宇发布了新的文献求助10
9秒前
坦率完成签到,获得积分10
10秒前
852应助JustinLiu采纳,获得20
11秒前
12秒前
岁月荣耀完成签到,获得积分0
12秒前
岁月荣耀发布了新的文献求助10
15秒前
粗暴的夏天完成签到 ,获得积分10
16秒前
zzz2193发布了新的文献求助10
16秒前
司忆发布了新的文献求助10
17秒前
在水一方应助qinqin采纳,获得10
18秒前
18秒前
量子星尘发布了新的文献求助10
18秒前
spc68应助cheng采纳,获得10
19秒前
23秒前
x686完成签到,获得积分10
24秒前
hys完成签到,获得积分10
25秒前
呆米完成签到,获得积分10
26秒前
谨慎的CZ完成签到 ,获得积分10
26秒前
Ivan完成签到 ,获得积分10
26秒前
麻呢呢完成签到,获得积分10
28秒前
haozixuan发布了新的文献求助10
29秒前
29秒前
小假完成签到 ,获得积分10
29秒前
ying发布了新的文献求助10
30秒前
量子星尘发布了新的文献求助10
30秒前
30秒前
ghfg完成签到,获得积分20
31秒前
32秒前
32秒前
33秒前
33秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Ägyptische Geschichte der 21.–30. Dynastie 2500
Human Embryology and Developmental Biology 7th Edition 2000
The Developing Human: Clinically Oriented Embryology 12th Edition 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
„Semitische Wissenschaften“? 1510
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5742035
求助须知:如何正确求助?哪些是违规求助? 5405283
关于积分的说明 15343770
捐赠科研通 4883510
什么是DOI,文献DOI怎么找? 2625039
邀请新用户注册赠送积分活动 1573909
关于科研通互助平台的介绍 1530861