Predicting and Evaluating Different Pretreatment Methods on Methane Production from Sludge Anaerobic Digestion via Automated Machine Learning with Ensembled Semisupervised Learning

厌氧消化 生化工程 主成分分析 机器学习 甲烷 无氧运动 计算机科学 人工智能 生物系统 生物 工程类 生态学 生理学
作者
Xiaoshi Cheng,Runze Xu,Yang Wu,Baiyang Tang,Yuting Luo,Wenxuan Huang,Feng Wang,Shiyu Fang,Qian Feng,Yu Cheng,Song Cheng,Jingyang Luo
出处
期刊:ACS ES&T engineering [American Chemical Society]
卷期号:4 (3): 525-539 被引量:8
标识
DOI:10.1021/acsestengg.3c00368
摘要

Accurate prediction of methane production in anaerobic digestion with various pretreatment strategies is of the utmost importance for efficient sludge treatment and resource recovery. Traditional machine learning (ML) algorithms have shown limited prediction accuracy due to challenges in optimizing complex parameters and the scarcity of data. This work proposed a novel integrated system that employed an ensemble semisupervised learning (SSL)-automated ML (AutoML) model with limited variable inputs to reveal the effects of different pretreatments on methane production during sludge digestion with explainable analysis. Considering the direct correlations of the pretreatment type and digestion substrates, the pretreatment type is considered as a hidden variable. Results demonstrated that the AutoML model outperformed the conventional ML models (i.e., support vector regression (SVR), extreme gradient boosting (XGB), etc.), as evidenced by its higher R2 value. Moreover, the integration of SSL further enhanced the prediction accuracy by effectively leveraging unlabeled data, leading to a reduction in the mean squared error from 11.3 to 9.7. Explainable analysis results revealed the significance of different variables and the utmost importance of operating time, followed by proteins, carbohydrates, chemical oxygen demand, and volatile fatty acids. Furthermore, principal component and correlation analysis unveiled the interconnected relationships among substrate concentration, microbial communities, and metabolic functions for methane production and found that the increasing substrate concentration promoted the enrichment of functional microbial and metabolic functions. These insights shed light on the advantages of SSL-AutoML in predicting methane production in anaerobic digestion systems and elucidate the dependence relationships with key variables, offering valuable guidance for effective sludge pretreatment with enhanced resource recovery capabilities.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
简单的老九关注了科研通微信公众号
1秒前
2秒前
科研通AI2S应助nixx采纳,获得10
2秒前
2秒前
喜羊羊完成签到 ,获得积分10
3秒前
4秒前
haocheng发布了新的文献求助10
4秒前
4秒前
尊敬乐蕊发布了新的文献求助10
7秒前
12秒前
尊敬乐蕊完成签到,获得积分10
12秒前
不配.应助佳远采纳,获得10
12秒前
13秒前
孤舟寂完成签到,获得积分10
14秒前
土豆淀粉完成签到 ,获得积分10
15秒前
秦善斓完成签到,获得积分10
16秒前
LNULZY发布了新的文献求助30
18秒前
啦啦啦啦啦啦完成签到,获得积分0
21秒前
www完成签到 ,获得积分10
23秒前
Ava应助魁梧的雨双采纳,获得10
23秒前
24秒前
搜集达人应助自然的晓山采纳,获得30
24秒前
Always完成签到,获得积分10
27秒前
PSCs完成签到,获得积分10
27秒前
科研通AI2S应助隐形山兰采纳,获得10
28秒前
田田发布了新的文献求助10
29秒前
31秒前
33秒前
33秒前
Bethune124完成签到 ,获得积分10
34秒前
song完成签到,获得积分10
35秒前
36秒前
柯凌发布了新的文献求助10
36秒前
37秒前
37秒前
srtw7ryyes完成签到 ,获得积分10
38秒前
Evelyn完成签到,获得积分20
38秒前
林歌ovo发布了新的文献求助10
38秒前
HaHa完成签到,获得积分10
38秒前
wx2360ouc完成签到 ,获得积分10
41秒前
高分求助中
Sustainability in Tides Chemistry 2800
Kinetics of the Esterification Between 2-[(4-hydroxybutoxy)carbonyl] Benzoic Acid with 1,4-Butanediol: Tetrabutyl Orthotitanate as Catalyst 1000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Very-high-order BVD Schemes Using β-variable THINC Method 568
Chen Hansheng: China’s Last Romantic Revolutionary 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3138583
求助须知:如何正确求助?哪些是违规求助? 2789532
关于积分的说明 7791599
捐赠科研通 2445937
什么是DOI,文献DOI怎么找? 1300750
科研通“疑难数据库(出版商)”最低求助积分说明 626058
版权声明 601079