Multilevel Laser-Induced Pain Measurement with Wasserstein Generative Adversarial Network — Gradient Penalty Model

生成对抗网络 对抗制 计算机科学 生成语法 人工智能 数学 图像(数学)
作者
Jiancai Leng,Jianqun Zhu,Yihao Yan,Xin Yu,Ming Liu,Yitai Lou,Yanbing Liu,Licai Gao,Yuan Sun,Tianzheng He,Qingbo Yang,Chao Feng,Dezheng Wang,Yang Zhang,Qing Xu,Fangzhou Xu
出处
期刊:International Journal of Neural Systems [World Scientific]
卷期号:34 (01) 被引量:5
标识
DOI:10.1142/s0129065723500673
摘要

Pain is an experience of unpleasant sensations and emotions associated with actual or potential tissue damage. In the global context, billions of people are affected by pain disorders. There are particular challenges in the measurement and assessment of pain, and the commonly used pain measuring tools include traditional subjective scoring methods and biomarker-based measures. The main tools for biomarker-based analysis are electroencephalography (EEG), electrocardiography and functional magnetic resonance. The EEG-based quantitative pain measurements are of immense value in clinical pain management and can provide objective assessments of pain intensity. The assessment of pain is now primarily limited to the identification of the presence or absence of pain, with less research on multilevel pain. High power laser stimulation pain experimental paradigm and five pain level classification methods based on EEG data augmentation are presented. First, the EEG features are extracted using modified S-transform, and the time-frequency information of the features is retained. Based on the pain recognition effect, the 20-40[Formula: see text]Hz frequency band features are optimized. Afterwards the Wasserstein generative adversarial network with gradient penalty is used for feature data augmentation. It can be inferred from the good classification performance of features in the parietal region of the brain that the sensory function of the parietal lobe region is effectively activated during the occurrence of pain. By comparing the latest data augmentation methods and classification algorithms, the proposed method has significant advantages for the five-level pain dataset. This research provides new ways of thinking and research methods related to pain recognition, which is essential for the study of neural mechanisms and regulatory mechanisms of pain.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
CipherSage应助dadsafyf采纳,获得10
1秒前
Shmilykk应助冷傲凝琴采纳,获得10
1秒前
屹男完成签到,获得积分10
1秒前
温婉发布了新的文献求助10
2秒前
2秒前
千yu发布了新的文献求助10
2秒前
1234发布了新的文献求助10
3秒前
饭饭完成签到,获得积分10
3秒前
量子星尘发布了新的文献求助10
3秒前
小西发布了新的文献求助10
4秒前
4秒前
不辣的皮特完成签到,获得积分10
5秒前
6秒前
222发布了新的文献求助10
6秒前
Tuesday发布了新的文献求助10
7秒前
陌上完成签到 ,获得积分10
8秒前
曲聋五完成签到 ,获得积分0
8秒前
8秒前
lagom发布了新的文献求助10
8秒前
18°N天水色完成签到,获得积分10
9秒前
彭于晏应助dandan采纳,获得10
9秒前
10秒前
Lee完成签到,获得积分20
10秒前
kiterunner完成签到,获得积分10
10秒前
12秒前
12秒前
小二郎应助双峰山采纳,获得10
12秒前
做个大侠发布了新的文献求助10
13秒前
NexusExplorer应助222采纳,获得10
13秒前
科研通AI6应助helong采纳,获得10
13秒前
天真的万声完成签到,获得积分10
13秒前
二尖瓣后叶应助1234采纳,获得10
14秒前
二尖瓣后叶应助1234采纳,获得10
14秒前
思源应助1234采纳,获得10
14秒前
14秒前
Lucas应助fay采纳,获得10
14秒前
ddbks完成签到,获得积分10
14秒前
奋斗的曼容完成签到,获得积分10
15秒前
FWCY发布了新的文献求助10
16秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 1070
The Complete Pro-Guide to the All-New Affinity Studio: The A-to-Z Master Manual: Master Vector, Pixel, & Layout Design: Advanced Techniques for Photo, Designer, and Publisher in the Unified Suite 1000
按地区划分的1,091个公共养老金档案列表 801
The International Law of the Sea (fourth edition) 800
Machine Learning for Polymer Informatics 500
A Guide to Genetic Counseling, 3rd Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5409732
求助须知:如何正确求助?哪些是违规求助? 4527293
关于积分的说明 14110056
捐赠科研通 4441780
什么是DOI,文献DOI怎么找? 2437589
邀请新用户注册赠送积分活动 1429594
关于科研通互助平台的介绍 1407723