E-YOLO: Recognition of estrus cow based on improved YOLOv8n model

发情周期 背景(考古学) 计算机科学 算法 动物科学 生物 古生物学
作者
Zheng Wang,Zhixin Hua,Yuchen Wen,Shujin Zhang,Xingshi Xu,Huaibo Song
出处
期刊:Expert Systems With Applications [Elsevier BV]
卷期号:238: 122212-122212 被引量:46
标识
DOI:10.1016/j.eswa.2023.122212
摘要

Timely and accurately identifying estrus cows is essential in modern dairy farming. To address the challenges of delayed and inefficient manual monitoring of cow estrus, an improved model based on You Only Look Once v8 Nano (YOLOv8n), named Estrus-YOLO (E-YOLO), was proposed to identify estrus cows efficiently. In this research, the dataset was labelled not only for cow mounting behavior but also innovatively labelled individual estrus cows, enabling precise identification of estrus cows. Due to the small size of cow in the field of view, the Complete Intersection over Union (CIoU) loss was replaced with the Normalized Wasserstein Distance (NWD) loss to reduce sensitivity to position deviations of target cows. Context Information Augmentation Module (CIAM) was proposed to enhance the contextual information for estrus cows by utilizing cow mounting behavior as reference features. Furthermore, the Triplet Attention Module (TAM) was incorporated into the Backbone to enhance the network's focus on individual estrus cows through cross-dimensional interactions. To validate the effectiveness of the algorithm, experiments were conducted on a dataset consisting of 1716 instances of cow mounting behavior. The experimental results demonstrated that the proposed model achieved an Average Precision of estrus (APestrus) of 93.90%, Average Precision of mounting (APmounting) of 95.70%, F1-score of 93.74%, detection speed of 8.1 ms/frame, with the parameters of 3.04 M, and the Floating-point Operations (FLOPs) of 9.9 G. Compared to the YOLOv8 model, the proposed model exhibited an improvement of 5.40% in APestrus and 3.30% in APmounting. When compared to Single Shot MultiBox Detector (SSD), Faster Region Convolutional Neural Network (Faster R-CNN), YOLOv5n, YOLOv5s, YOLOv7-tiny, YOLOv8n, and YOLOv8s, the proposed model had fewer parameters, FLOPs, and fast detection speed. Except for APmounting, which was slightly lower than SSD, the rest accuracy indexes were the highest, showing good comprehensive performance and meeting the requirements of accurate and rapid identification of estrus cows. The proposed model was helpful for accurate and real-time monitoring of estrus cows in complex breeding environments and all-weather conditions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
干净千青发布了新的文献求助10
刚刚
意志力完成签到,获得积分10
刚刚
小冰棍发布了新的文献求助10
刚刚
weishen完成签到,获得积分0
1秒前
淡然谷秋完成签到 ,获得积分10
1秒前
Forrie关注了科研通微信公众号
2秒前
ling发布了新的文献求助10
2秒前
3秒前
4秒前
务实的天空完成签到,获得积分10
4秒前
5秒前
刘新完成签到,获得积分10
6秒前
7秒前
干净千青完成签到,获得积分10
8秒前
十一发布了新的文献求助10
9秒前
Jasper应助ling采纳,获得10
11秒前
明理开山完成签到,获得积分10
13秒前
14秒前
14秒前
妖孽的二狗完成签到 ,获得积分10
16秒前
wjm发布了新的文献求助10
16秒前
核桃应助ronnie采纳,获得10
19秒前
虚幻的夜天完成签到 ,获得积分10
22秒前
彩色夜阑发布了新的文献求助10
23秒前
量子星尘发布了新的文献求助10
24秒前
无花果应助温暖琦采纳,获得10
25秒前
25秒前
还单身的香菇完成签到,获得积分10
26秒前
27秒前
于芋菊完成签到,获得积分0
31秒前
汉堡包应助真实的薯片采纳,获得10
31秒前
文静千凡发布了新的文献求助10
31秒前
wjm完成签到,获得积分10
32秒前
CNS发布了新的文献求助10
32秒前
科研王完成签到 ,获得积分10
34秒前
tiger完成签到,获得积分10
35秒前
Hello应助LWJJNU采纳,获得10
36秒前
37秒前
淡淡文轩完成签到,获得积分10
37秒前
39秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
Comparison of adverse drug reactions of heparin and its derivates in the European Economic Area based on data from EudraVigilance between 2017 and 2021 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3952529
求助须知:如何正确求助?哪些是违规求助? 3497916
关于积分的说明 11089399
捐赠科研通 3228442
什么是DOI,文献DOI怎么找? 1784930
邀请新用户注册赠送积分活动 868979
科研通“疑难数据库(出版商)”最低求助积分说明 801309