E-YOLO: Recognition of estrus cow based on improved YOLOv8n model

发情周期 背景(考古学) 计算机科学 算法 动物科学 生物 古生物学
作者
Zheng Wang,Zhixin Hua,Yuchen Wen,Shujin Zhang,Xingshi Xu,Huaibo Song
出处
期刊:Expert Systems With Applications [Elsevier]
卷期号:238: 122212-122212 被引量:12
标识
DOI:10.1016/j.eswa.2023.122212
摘要

Timely and accurately identifying estrus cows is essential in modern dairy farming. To address the challenges of delayed and inefficient manual monitoring of cow estrus, an improved model based on You Only Look Once v8 Nano (YOLOv8n), named Estrus-YOLO (E-YOLO), was proposed to identify estrus cows efficiently. In this research, the dataset was labelled not only for cow mounting behavior but also innovatively labelled individual estrus cows, enabling precise identification of estrus cows. Due to the small size of cow in the field of view, the Complete Intersection over Union (CIoU) loss was replaced with the Normalized Wasserstein Distance (NWD) loss to reduce sensitivity to position deviations of target cows. Context Information Augmentation Module (CIAM) was proposed to enhance the contextual information for estrus cows by utilizing cow mounting behavior as reference features. Furthermore, the Triplet Attention Module (TAM) was incorporated into the Backbone to enhance the network's focus on individual estrus cows through cross-dimensional interactions. To validate the effectiveness of the algorithm, experiments were conducted on a dataset consisting of 1716 instances of cow mounting behavior. The experimental results demonstrated that the proposed model achieved an Average Precision of estrus (APestrus) of 93.90%, Average Precision of mounting (APmounting) of 95.70%, F1-score of 93.74%, detection speed of 8.1 ms/frame, with the parameters of 3.04 M, and the Floating-point Operations (FLOPs) of 9.9 G. Compared to the YOLOv8 model, the proposed model exhibited an improvement of 5.40% in APestrus and 3.30% in APmounting. When compared to Single Shot MultiBox Detector (SSD), Faster Region Convolutional Neural Network (Faster R-CNN), YOLOv5n, YOLOv5s, YOLOv7-tiny, YOLOv8n, and YOLOv8s, the proposed model had fewer parameters, FLOPs, and fast detection speed. Except for APmounting, which was slightly lower than SSD, the rest accuracy indexes were the highest, showing good comprehensive performance and meeting the requirements of accurate and rapid identification of estrus cows. The proposed model was helpful for accurate and real-time monitoring of estrus cows in complex breeding environments and all-weather conditions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
虚心谷丝完成签到 ,获得积分10
1秒前
2秒前
明亮无颜发布了新的文献求助30
2秒前
3秒前
深情不弱发布了新的文献求助10
4秒前
6秒前
7秒前
7秒前
青岩发布了新的文献求助10
8秒前
ycg发布了新的文献求助100
8秒前
SciGPT应助顾家老攻采纳,获得10
8秒前
在水一方应助去微软采纳,获得10
9秒前
LZY完成签到,获得积分10
9秒前
sweet发布了新的文献求助30
9秒前
我是老大应助Abi采纳,获得10
10秒前
安详的语蕊完成签到,获得积分10
10秒前
酷波er应助lcc采纳,获得10
10秒前
10秒前
所所应助科研通管家采纳,获得10
11秒前
慕青应助科研通管家采纳,获得10
11秒前
苏卿应助科研通管家采纳,获得10
11秒前
科研通AI2S应助科研通管家采纳,获得10
12秒前
JIE发布了新的文献求助10
12秒前
大个应助科研通管家采纳,获得10
12秒前
李健应助科研通管家采纳,获得10
12秒前
Owen应助科研通管家采纳,获得10
12秒前
迷路海蓝应助科研通管家采纳,获得20
12秒前
苏卿应助科研通管家采纳,获得10
12秒前
l玖应助科研通管家采纳,获得10
12秒前
orixero应助科研通管家采纳,获得10
12秒前
Owen应助科研通管家采纳,获得10
12秒前
Jasper应助科研通管家采纳,获得10
12秒前
搜集达人应助科研通管家采纳,获得10
12秒前
天天快乐应助科研通管家采纳,获得10
12秒前
CodeCraft应助科研通管家采纳,获得10
12秒前
l玖应助科研通管家采纳,获得10
12秒前
Owen应助科研通管家采纳,获得10
12秒前
13秒前
13秒前
13秒前
高分求助中
The Oxford Handbook of Social Cognition (Second Edition, 2024) 1050
Kinetics of the Esterification Between 2-[(4-hydroxybutoxy)carbonyl] Benzoic Acid with 1,4-Butanediol: Tetrabutyl Orthotitanate as Catalyst 1000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Chen Hansheng: China’s Last Romantic Revolutionary 500
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3140831
求助须知:如何正确求助?哪些是违规求助? 2791790
关于积分的说明 7800310
捐赠科研通 2448069
什么是DOI,文献DOI怎么找? 1302350
科研通“疑难数据库(出版商)”最低求助积分说明 626516
版权声明 601210