已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Credit Card Fraud Detection using TabNet

付款 信用卡 计算机科学 人气 稳健性(进化) 信用卡诈骗 支付卡 机器学习 支付系统 计算机安全 人工智能 数据挖掘 万维网 生物化学 化学 基因 心理学 社会心理学
作者
Chew Chee Meng,Kian Ming Lim,Chin Poo Lee,Jit Yan Lim
标识
DOI:10.1109/icoict58202.2023.10262711
摘要

The adopting of cashless payment methods, such as credit card payments and online transactions, has significantly enhanced the payment experience and added convenience to our daily lives. However, with the increase in cashless payment usage, financial fraud has become more sophisticated, posing a significant challenge to the security of these payment systems. In response, machine learning-based approaches have gained popularity in fraud detection. In this research paper, we propose the application of a deep tabular learning model, TabNet, for classifying transactions into fraudulent or non-fraudulent categories. TabNet utilizes a sequential attention mechanism to learn from tabular data. It comprises a series of decision steps where each step selects relevant features and updates the internal representation of the data. This mechanism enables the model to effectively capture complex, non-linear relationships between features, making it highly effective for fraud detection. The utilization of TabNet in fraud detection can contribute to strengthening the security of the payment system and reduce the chance of financial fraud. To evaluate the efficacy of our proposed approach, we conducted experiments on three widely used credit card fraud datasets, including the MLG-ULB dataset, the IEEE-CIS Fraud dataset, and the 10M dataset. Our experiments revealed that TabNet outperforms the state-of-the-art approaches across all three datasets, demonstrating its robustness and effectiveness in detecting fraudulent transactions.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
lili发布了新的文献求助10
7秒前
Smith.w应助bioinformation采纳,获得10
9秒前
11秒前
15秒前
涵Allen完成签到 ,获得积分10
16秒前
李健的小迷弟应助星期八采纳,获得10
19秒前
负责吃饭完成签到,获得积分10
20秒前
26秒前
淡然元彤应助ChemPhys采纳,获得400
26秒前
28秒前
岁岁安完成签到,获得积分10
28秒前
华仔应助lili采纳,获得10
31秒前
子阅发布了新的文献求助10
33秒前
隐形曼青应助南与晚霞采纳,获得10
33秒前
38秒前
小葡萄icon完成签到 ,获得积分10
39秒前
39秒前
FashionBoy应助Gilbert采纳,获得10
40秒前
活力的以寒完成签到 ,获得积分10
42秒前
叶文言发布了新的文献求助10
42秒前
碳烤牛哇完成签到,获得积分10
45秒前
49秒前
bioinformation完成签到,获得积分10
51秒前
biubiubiu完成签到 ,获得积分10
52秒前
54秒前
深情安青应助Rita采纳,获得10
55秒前
七草肃发布了新的文献求助10
59秒前
59秒前
等待寄云完成签到 ,获得积分10
1分钟前
1分钟前
1分钟前
粽子完成签到,获得积分10
1分钟前
默默发布了新的文献求助10
1分钟前
充电宝应助英俊的雁易采纳,获得10
1分钟前
1分钟前
zf发布了新的文献求助10
1分钟前
科研发布了新的文献求助20
1分钟前
1分钟前
1分钟前
1分钟前
高分求助中
歯科矯正学 第7版(或第5版) 1004
Semiconductor Process Reliability in Practice 1000
Smart but Scattered: The Revolutionary Executive Skills Approach to Helping Kids Reach Their Potential (第二版) 1000
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 600
GROUP-THEORY AND POLARIZATION ALGEBRA 500
Mesopotamian divination texts : conversing with the gods : sources from the first millennium BCE 500
Days of Transition. The Parsi Death Rituals(2011) 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3234488
求助须知:如何正确求助?哪些是违规求助? 2880858
关于积分的说明 8217231
捐赠科研通 2548429
什么是DOI,文献DOI怎么找? 1377761
科研通“疑难数据库(出版商)”最低求助积分说明 647959
邀请新用户注册赠送积分活动 623314