Dual Single-Atomic Co–Mn Sites in Metal–Organic-Framework-Derived N-Doped Nanoporous Carbon for Electrochemical Oxygen Reduction

电化学 过电位 催化作用 沸石咪唑盐骨架 金属有机骨架 密度泛函理论 电解质 吸附 材料科学 纳米孔 咪唑酯 无机化学 质子交换膜燃料电池 化学 化学工程 物理化学 纳米技术 计算化学 电极 有机化学 工程类
作者
Gargi Dey,Rajkumar Jana,Shadab Saifi,Ravi Kumar,D. Bhattacharyya,Ayan Datta,Amit Sinha,A. Aijaz
出处
期刊:ACS Nano [American Chemical Society]
卷期号:17 (19): 19155-19167 被引量:36
标识
DOI:10.1021/acsnano.3c05379
摘要

Synthesizing dual single-atom catalysts (DSACs) with atomically isolated metal pairs is a challenging task but can be an effective way to enhance the performance for electrochemical oxygen reduction reaction (ORR). Herein, well-defined DSACs of Co-Mn, stabilized in N-doped porous carbon polyhedra (named CoMn/NC), are synthesized using high-temperature pyrolysis of a Co/Mn-doped zeolitic imidazolate framework. The atomically isolated Co-Mn site in CoMn/NC is recognized by combining microscopic as well as spectroscopic techniques. CoMn/NC exhibited excellent ORR activities in alkaline (E1/2 = 0.89 V) as well as in acidic (E1/2 = 0.82 V) electrolytes with long-term durability and enhanced methanol tolerance. Density functional theory (DFT) suggests that the Co-Mn site is efficiently activating the O-O bond via bridging adsorption, decisive for the 4e- oxygen reduction process. Though the Co-Mn sites favor O2 activation via the dissociative ORR mechanism, stronger adsorption of the intermediates in the dissociative path degrades the overall ORR activity. Our DFT studies conclude that the ORR on an Co-Mn site mainly occurs via bridging side-on O2 adsorption following thermodynamically and kinetically favorable associative mechanistic pathways with a lower overpotential and activation barrier. CoMn/NC performed excellently as a cathode in a proton exchange membrane (PEM) fuel cell and rechargeable Zn-air battery with high peak power densities of 970 and 176 mW cm-2, respectively. This work provides the guidelines for the rational design and synthesis of nonprecious DSACs for enhancing the ORR activity as well as the robustness of DSACs and suggests a design of multifunctional robust electrocatalysts for energy storage and conversion devices.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
majf完成签到,获得积分10
刚刚
好困应助qzj采纳,获得10
刚刚
健壮惋清完成签到 ,获得积分10
1秒前
嘟嘟请让一让完成签到,获得积分10
1秒前
jor666完成签到,获得积分10
1秒前
diudiu完成签到,获得积分10
1秒前
2秒前
闲着也是闲着完成签到 ,获得积分10
2秒前
虚心的阿松完成签到,获得积分10
2秒前
Hero完成签到,获得积分10
4秒前
4秒前
吉良吉影完成签到,获得积分10
5秒前
6秒前
6秒前
三石SUN完成签到 ,获得积分10
6秒前
我心飞发布了新的文献求助10
7秒前
7秒前
科研通AI5应助Venus采纳,获得10
7秒前
Sudon完成签到 ,获得积分10
9秒前
9秒前
去追完成签到 ,获得积分10
11秒前
joybee完成签到,获得积分0
12秒前
搞怪泥猴桃完成签到,获得积分10
12秒前
稳重依云完成签到 ,获得积分10
14秒前
Wsyyy完成签到 ,获得积分10
14秒前
LC完成签到 ,获得积分10
15秒前
MXene应助神猪无敌采纳,获得20
15秒前
TIAOTIAO完成签到,获得积分10
16秒前
zhoujy完成签到,获得积分10
16秒前
再学三分钟完成签到 ,获得积分20
16秒前
未央完成签到,获得积分10
17秒前
ZHY完成签到,获得积分10
20秒前
sanwan发布了新的文献求助10
20秒前
JamesPei应助tyzsail采纳,获得10
20秒前
恋恋青葡萄完成签到,获得积分10
20秒前
陶醉怜容完成签到,获得积分10
20秒前
领导范儿应助搞怪泥猴桃采纳,获得10
20秒前
21秒前
晚风完成签到 ,获得积分10
21秒前
21秒前
高分求助中
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Animal Physiology 2000
Les Mantodea de Guyane Insecta, Polyneoptera 2000
Am Rande der Geschichte : mein Leben in China / Ruth Weiss 1500
CENTRAL BOOKS: A BRIEF HISTORY 1939 TO 1999 by Dave Cope 1000
Machine Learning Methods in Geoscience 1000
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3736892
求助须知:如何正确求助?哪些是违规求助? 3280817
关于积分的说明 10021089
捐赠科研通 2997457
什么是DOI,文献DOI怎么找? 1644633
邀请新用户注册赠送积分活动 782083
科研通“疑难数据库(出版商)”最低求助积分说明 749703