Machine learning assisted discrimination and detection of antibiotics by using multicolor microfluidic chemiluminescence detection chip

化学 鲁米诺 检出限 化学发光 色谱法 微流控芯片 微流控 分析化学(期刊) 纳米技术 材料科学
作者
Fang Li,Min Zhu,Zimu Li,Nuotong Shen,Hao Peng,Bing Li,Jianbo He
出处
期刊:Talanta [Elsevier BV]
卷期号:269: 125446-125446 被引量:8
标识
DOI:10.1016/j.talanta.2023.125446
摘要

The fabrication of multicolor chemiluminescence (CL) sensing chip for the discrimination and detection of multianalytes remains a great challenge. Herein, machine learning assisted multicolor microfluidic CL detection chip for the identification and concentration prediction of antibiotics was presented. Firstly, a three-channel microfluidic CL detection chip was fabricated. The three detection zones of the microfluidic detection chip were modified with CL catalyst Co(II) and different CL reagents including luminol, luminol mixed with fluorescein, and luminol mixed with phloxine B, respectively. Strong blue, green and pink-purple colored light emissions can be generated from the three detection zones in the presence of H2O2 solution. The three multicolor CL emissions show different degrees of reduce in intensity and change in color in the presence of different antibiotics, including diethylstilbestro (DES), metronidazole (MNZ), kanamycin (KAN), isoniazide (INH), and ceftiofur sodium (CS), resulting in distinct fingerprint-like response patterns. The red (R), green (G), blue (B) and gray scale values of the three multicolor light emissions were extracted and ten characteristic sensing parameters were chosen to obtain multicolor CL response database. Then, machine learning assisted data analysis were carried out. The five antibiotics can be facilely classified by using principal component analysis (PCA) and hierarchical clustering analysis (HCA), and further quantified by using deep neural networks (DNN) algorithm. Good results were obtained for identification of binary antibiotic mixtures, spiked antibiotics in water samples, and unknown antibiotic samples. Satisfied results were obtained for concentration prediction of antibiotics. This work provides a simple machine learning assisted and multicolor microfluidic CL detection chip based CL sensing strategy for discrimination and quantitative detection of multiple analytes.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
zwy发布了新的文献求助10
刚刚
搜集达人应助lililili采纳,获得10
1秒前
Wen完成签到,获得积分10
1秒前
1秒前
bzc完成签到,获得积分10
2秒前
wan完成签到,获得积分10
3秒前
大个应助lyyy采纳,获得10
3秒前
bkagyin应助stonedream采纳,获得10
3秒前
zhouzheyu完成签到,获得积分10
3秒前
李浩然完成签到,获得积分10
4秒前
量子星尘发布了新的文献求助10
4秒前
5秒前
腼腆的千雁完成签到,获得积分10
5秒前
5秒前
6秒前
生菜完成签到,获得积分20
6秒前
mouxq发布了新的文献求助10
7秒前
搜集达人应助lelebuaichi采纳,获得10
8秒前
典雅煎蛋完成签到,获得积分10
9秒前
迷路竹完成签到,获得积分10
10秒前
12秒前
悲凉的大有完成签到,获得积分10
12秒前
浮游应助小黑采纳,获得10
12秒前
13秒前
13秒前
倪妮发布了新的文献求助10
13秒前
明镜完成签到,获得积分10
14秒前
碧蓝的自行车完成签到,获得积分10
14秒前
14秒前
15秒前
哈哈哈发布了新的文献求助100
15秒前
15秒前
8888拉完成签到,获得积分10
16秒前
17秒前
在水一方应助旺仔秋秋糖采纳,获得10
17秒前
lililili发布了新的文献求助10
17秒前
18秒前
马达完成签到,获得积分10
18秒前
LUAN发布了新的文献求助10
18秒前
18秒前
高分求助中
Comprehensive Toxicology Fourth Edition 24000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
World Nuclear Fuel Report: Global Scenarios for Demand and Supply Availability 2025-2040 800
Handbook of Social and Emotional Learning 800
Risankizumab Versus Ustekinumab For Patients with Moderate to Severe Crohn's Disease: Results from the Phase 3B SEQUENCE Study 600
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5142850
求助须知:如何正确求助?哪些是违规求助? 4340997
关于积分的说明 13519072
捐赠科研通 4181180
什么是DOI,文献DOI怎么找? 2292757
邀请新用户注册赠送积分活动 1293411
关于科研通互助平台的介绍 1235982