已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Optimal Design of Bi-Planar Heater with Magnetic Field Self-Suppression Configuration Based on Multi-Objective Optimization

平面的 磁场 领域(数学) 计算机科学 物理 数学 计算机图形学(图像) 量子力学 纯数学
作者
Huimin Wang,Shuying Wang,Bo Li,Yujie Qian,Jixi Lu
标识
DOI:10.2139/ssrn.4523949
摘要

As a crucial component, the vapor cell serves as the fundamental sensing element in various atomic sensors, and electric heating is typically required to enhance the density of alkali metal atoms. Due to the presence of driving current, electric heating can unavoidably introduce interfering magnetic fields, which affect the performance of atomic sensors. To suppress this magnetic field interference, the electric heater trace configuration must be designed to achieve the magnetic field self-suppression effect. However, previous studies have solely focused on the optimization design of a single-sided heater, which leads to the spatial magnetic field gradient and limited improvement of the self-suppression effect. Therefore, this study proposes an optimization design method for the bi-planar heater, and uses the combination optimization of two heater pieces with spatial symmetrical distribution. Using the multi-objective optimization algorithm, the structure parameters and current directions of the heater are optimized to achieve superior magnetic field suppression and reduce the vapor cell magnetic field gradient. Both finite element simulation and experimental results demonstrate that the proposed bi-planar heating configuration generates an average magnetic field of 0.06 nT/mA in the central region of the vapor cell, which is more than three times less than the previous single-sided optimal configuration and more than five times less than the bi-planar symmetrical use of the single-sided optimal configuration. The proposed approach is expected to enhance the performance of atomic magnetometers and other atomic sensors that are sensitive to magnetic fields

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
krajicek完成签到,获得积分10
刚刚
amber完成签到 ,获得积分10
1秒前
fan完成签到 ,获得积分10
1秒前
1秒前
轻爱完成签到,获得积分10
1秒前
111发布了新的文献求助10
2秒前
华仔应助krajicek采纳,获得10
5秒前
Anna完成签到 ,获得积分10
5秒前
Orange应助一期一采纳,获得10
5秒前
刻苦的小土豆完成签到 ,获得积分10
5秒前
Crystal完成签到,获得积分10
7秒前
罗零完成签到 ,获得积分10
9秒前
cc123完成签到,获得积分10
13秒前
111完成签到,获得积分20
15秒前
北觅完成签到 ,获得积分10
16秒前
大模型应助甜味拾荒者采纳,获得10
16秒前
辜月十二完成签到 ,获得积分10
17秒前
18秒前
饱满的镜子完成签到,获得积分10
19秒前
烟花应助CTK采纳,获得10
22秒前
wisher完成签到 ,获得积分10
22秒前
华师完成签到,获得积分20
24秒前
24秒前
hu完成签到,获得积分10
27秒前
28秒前
水若琳完成签到,获得积分10
28秒前
杳鸢应助酷炫的黄豆采纳,获得20
29秒前
湖月照我影完成签到,获得积分20
29秒前
31秒前
32秒前
gc完成签到 ,获得积分10
33秒前
yhr完成签到 ,获得积分10
33秒前
想睡觉亦寻完成签到 ,获得积分10
34秒前
Liao完成签到 ,获得积分10
34秒前
华师发布了新的文献求助10
35秒前
漂流完成签到,获得积分10
38秒前
吃点红糖馒头完成签到 ,获得积分10
38秒前
酷炫的黄豆完成签到 ,获得积分10
38秒前
Flash完成签到 ,获得积分10
40秒前
xiaoshuwang完成签到,获得积分10
41秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Cognitive Paradigms in Knowledge Organisation 2000
Effect of reactor temperature on FCC yield 2000
How Maoism Was Made: Reconstructing China, 1949-1965 800
Introduction to Spectroscopic Ellipsometry of Thin Film Materials Instrumentation, Data Analysis, and Applications 600
Promoting women's entrepreneurship in developing countries: the case of the world's largest women-owned community-based enterprise 500
Shining Light on the Dark Side of Personality 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3310979
求助须知:如何正确求助?哪些是违规求助? 2943803
关于积分的说明 8516399
捐赠科研通 2619072
什么是DOI,文献DOI怎么找? 1431987
科研通“疑难数据库(出版商)”最低求助积分说明 664484
邀请新用户注册赠送积分活动 649782