亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Efficient Brain Tumor Segmentation with Lightweight Separable Spatial Convolutional Network

可分离空间 计算机科学 分割 人工智能 卷积神经网络 模式识别(心理学) 数学 数学分析
作者
Hao Zhang,Meng Liu,Yuan Qi,Ning Yang,Shunbo Hu,Liqiang Nie,Wenyin Zhang
出处
期刊:ACM Transactions on Multimedia Computing, Communications, and Applications [Association for Computing Machinery]
卷期号:20 (7): 1-19 被引量:6
标识
DOI:10.1145/3653715
摘要

Accurate and automated segmentation of lesions in brain MRI scans is crucial in diagnostics and treatment planning. Despite the significant achievements of existing approaches, they often require substantial computational resources and fail to fully exploit the synergy between low-level and high-level features. To address these challenges, we introduce the Separable Spatial Convolutional Network (SSCN), an innovative model that refines the U-Net architecture to achieve efficient brain tumor segmentation with minimal computational cost. SSCN integrates the PocketNet paradigm and replaces standard convolutions with depthwise separable convolutions, resulting in a significant reduction in parameters and computational load. Additionally, our feature complementary module enhances the interaction between features across the encoder-decoder structure, facilitating the integration of multi-scale features while maintaining low computational demands. The model also incorporates a separable spatial attention mechanism, enhancing its capability to discern spatial details. Empirical validations on standard datasets demonstrate the effectiveness of our proposed model, especially in segmenting small and medium-sized tumors, with only 0.27M parameters and 3.68 GFlops. Our code is available at https://github.com/zzpr/SSCN .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
一两风完成签到,获得积分20
3秒前
十三完成签到 ,获得积分10
6秒前
8秒前
lh完成签到,获得积分10
9秒前
10秒前
10秒前
外向的醉易完成签到,获得积分10
12秒前
13秒前
烟花应助ddd采纳,获得10
13秒前
lanyue发布了新的文献求助50
15秒前
科研通AI5应助lanyue采纳,获得30
28秒前
30秒前
40秒前
开朗亦绿完成签到,获得积分10
50秒前
59秒前
1分钟前
Aypnia完成签到,获得积分10
1分钟前
viettu7d完成签到,获得积分20
1分钟前
cy0824完成签到 ,获得积分10
1分钟前
Aypnia发布了新的文献求助10
1分钟前
1分钟前
1分钟前
1分钟前
1分钟前
1分钟前
倪妮发布了新的文献求助10
1分钟前
倪妮发布了新的文献求助10
1分钟前
倪妮发布了新的文献求助10
1分钟前
倪妮发布了新的文献求助50
1分钟前
倪妮发布了新的文献求助10
1分钟前
倪妮发布了新的文献求助10
1分钟前
ddd发布了新的文献求助10
1分钟前
1分钟前
zozox完成签到 ,获得积分10
1分钟前
潇湘完成签到 ,获得积分10
1分钟前
1分钟前
科研通AI2S应助科研通管家采纳,获得10
1分钟前
田様应助科研通管家采纳,获得10
1分钟前
2分钟前
丁元英完成签到,获得积分10
2分钟前
高分求助中
Comprehensive Toxicology Fourth Edition 2026 10000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Target genes for RNAi in pest control: A comprehensive overview 600
Master Curve-Auswertungen und Untersuchung des Größeneffekts für C(T)-Proben - aktuelle Erkenntnisse zur Untersuchung des Master Curve Konzepts für ferritisches Gusseisen mit Kugelgraphit bei dynamischer Beanspruchung (Projekt MCGUSS) 500
Design and Development of A CMOS Integrated Multimodal Sensor System with Carbon Nano-electrodes for Biosensor Applications 500
A novel angiographic index for predicting the efficacy of drug-coated balloons in small vessels 500
Textbook of Neonatal Resuscitation ® 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5104396
求助须知:如何正确求助?哪些是违规求助? 4314528
关于积分的说明 13443436
捐赠科研通 4142849
什么是DOI,文献DOI怎么找? 2269970
邀请新用户注册赠送积分活动 1272555
关于科研通互助平台的介绍 1209381