可分离空间
计算机科学
分割
人工智能
卷积神经网络
模式识别(心理学)
数学
数学分析
作者
Hao Zhang,Meng Liu,Yuan Qi,Ning Yang,Shunbo Hu,Liqiang Nie,Wenyin Zhang
摘要
Accurate and automated segmentation of lesions in brain MRI scans is crucial in diagnostics and treatment planning. Despite the significant achievements of existing approaches, they often require substantial computational resources and fail to fully exploit the synergy between low-level and high-level features. To address these challenges, we introduce the Separable Spatial Convolutional Network (SSCN), an innovative model that refines the U-Net architecture to achieve efficient brain tumor segmentation with minimal computational cost. SSCN integrates the PocketNet paradigm and replaces standard convolutions with depthwise separable convolutions, resulting in a significant reduction in parameters and computational load. Additionally, our feature complementary module enhances the interaction between features across the encoder-decoder structure, facilitating the integration of multi-scale features while maintaining low computational demands. The model also incorporates a separable spatial attention mechanism, enhancing its capability to discern spatial details. Empirical validations on standard datasets demonstrate the effectiveness of our proposed model, especially in segmenting small and medium-sized tumors, with only 0.27M parameters and 3.68 GFlops. Our code is available at https://github.com/zzpr/SSCN .
科研通智能强力驱动
Strongly Powered by AbleSci AI