Predicting rectal cancer tumor budding grading based on MRI and CT with multimodal deep transfer learning: A dual-center study

瘤芽 逻辑回归 队列 接收机工作特性 结直肠癌 医学 癌症 机器学习 肿瘤科 人工智能 计算机科学 内科学 转移 淋巴结转移
作者
Ziyan Liu,Genji Bai,Fan Bai,Yuxin Ding,Han Liu,Genji Bai
出处
期刊:Heliyon [Elsevier]
卷期号:10 (7): e28769-e28769
标识
DOI:10.1016/j.heliyon.2024.e28769
摘要

To investigate the effectiveness of a multimodal deep learning model in predicting tumor budding (TB) grading in rectal cancer (RC) patients.A retrospective analysis was conducted on 355 patients with rectal adenocarcinoma from two different hospitals. Among them, 289 patients from our institution were randomly divided into an internal training cohort (n = 202) and an internal validation cohort (n = 87) in a 7:3 ratio, while an additional 66 patients from another hospital constituted an external validation cohort. Various deep learning models were constructed and compared for their performance using T1CE and CT-enhanced images, and the optimal models were selected for the creation of a multimodal fusion model. Based on single and multiple factor logistic regression, clinical N staging and fecal occult blood were identified as independent risk factors and used to construct the clinical model. A decision-level fusion was employed to integrate these two models to create an ensemble model. The predictive performance of each model was evaluated using the area under the curve (AUC), DeLong's test, calibration curve, and decision curve analysis (DCA). Model visualization Gradient-weighted Class Activation Mapping (Grad-CAM) was performed for model interpretation.The multimodal fusion model demonstrated superior performance compared to single-modal models, with AUC values of 0.869 (95% CI: 0.761-0.976) for the internal validation cohort and 0.848 (95% CI: 0.721-0.975) for the external validation cohort. N-stage and fecal occult blood were identified as clinically independent risk factors through single and multivariable logistic regression analysis. The final ensemble model exhibited the best performance, with AUC values of 0.898 (95% CI: 0.820-0.975) for the internal validation cohort and 0.868 (95% CI: 0.768-0.968) for the external validation cohort.Multimodal deep learning models can effectively and non-invasively provide individualized predictions for TB grading in RC patients, offering valuable guidance for treatment selection and prognosis assessment.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
默默的凡梅完成签到,获得积分10
1秒前
默默含卉发布了新的文献求助50
1秒前
naturehome发布了新的文献求助10
2秒前
小蘑菇应助bobo采纳,获得10
2秒前
从容芮应助wwwwding采纳,获得50
3秒前
天天快乐应助勤恳怀梦采纳,获得10
5秒前
6秒前
zzzzz完成签到,获得积分20
7秒前
z_完成签到,获得积分10
9秒前
西子阳发布了新的文献求助10
9秒前
bxj发布了新的文献求助10
10秒前
默默含卉完成签到,获得积分10
11秒前
领导范儿应助wg采纳,获得10
12秒前
12秒前
14秒前
SciGPT应助Likx采纳,获得10
14秒前
缓慢的珊珊完成签到,获得积分10
15秒前
快看文献完成签到 ,获得积分10
16秒前
西子阳完成签到,获得积分10
16秒前
16秒前
为什么不学习完成签到,获得积分10
18秒前
三千完成签到,获得积分10
18秒前
赘婿应助qiao采纳,获得10
19秒前
科研通AI2S应助bxj采纳,获得10
19秒前
haoooooooooooooo应助bxj采纳,获得10
19秒前
haoooooooooooooo应助bxj采纳,获得10
19秒前
科研通AI2S应助bxj采纳,获得10
19秒前
万默发布了新的文献求助10
19秒前
天天快乐应助科研通管家采纳,获得10
21秒前
科研通AI2S应助科研通管家采纳,获得10
21秒前
科研通AI2S应助科研通管家采纳,获得10
21秒前
123发布了新的文献求助10
22秒前
万能图书馆应助默默含卉采纳,获得10
23秒前
24秒前
66完成签到,获得积分10
24秒前
25秒前
26秒前
Zhang Wei发布了新的文献求助10
28秒前
su得发布了新的文献求助10
29秒前
dandan完成签到,获得积分10
29秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3155969
求助须知:如何正确求助?哪些是违规求助? 2807310
关于积分的说明 7872521
捐赠科研通 2465654
什么是DOI,文献DOI怎么找? 1312280
科研通“疑难数据库(出版商)”最低求助积分说明 630031
版权声明 601905