Rapid discrimination and ratio quantification of mixed antibiotics in aqueous solution through integrative analysis of SERS spectra via CNN combined with NN-EN model

卷积神经网络 抗生素 主成分分析 深度学习 环丙沙星 表面增强拉曼光谱 污染 拉曼光谱 生物系统 化学 计算机科学 模式识别(心理学) 材料科学 人工智能 拉曼散射 生态学 物理 光学 生物 生物化学
作者
Quan Yuan,Lin-Fei Yao,Jia-Wei Tang,Zhang-Wen Ma,Jing-Yi Mou,Xin‐Ru Wen,Muhammad Usman,Xiang Wu,Liang Wang
出处
期刊:Journal of Advanced Research [Elsevier BV]
被引量:2
标识
DOI:10.1016/j.jare.2024.03.016
摘要

Abusing antibiotic residues in the natural environment has become a severe public health and ecological environmental problem. The side effects of its biochemical and physiological consequences are severe. To avoid antibiotic contamination in water, implementing universal and rapid antibiotic residue detection technology is critical to maintaining antibiotic safety in aquatic environments. Surface-enhanced Raman spectroscopy (SERS) provides a powerful tool for identifying small molecular components with high sensitivity and selectivity. However, it remains a challenge to identify pure antibiotics from SERS spectra due to coexisting components in the mixture. In this study, an intelligent analysis model for the SERS spectrum based on a deep learning algorithm was proposed for rapid identification of the antibiotic components in the mixture and quantitative determination of the ratios of these components. We established a water environment system containing three antibiotic residues of ciprofloxacin, doxycycline, and levofloxacin. To facilitate qualitative and quantitative analysis of the SERS spectra antibiotic mixture datasets, we developed a computational framework integrating a convolutional neural network (CNN) and a non-negative elastic network (NN-EN) method. The experimental results demonstrate that the CNN model has a recognition accuracy of 98.68%, and the interpretation analysis of Shapley Additive exPlanations (SHAP) shows that our model can specifically focus on the characteristic peak distribution. In contrast, the NN-EN model can accurately quantify each component's ratio in the mixture. Integrating the SERS technique assisted by the CNN combined with the NN-EN model exhibits great potential for rapid identification and high-precision quantification of antibiotic residues in aquatic environments.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
李健的小迷弟应助宁ning采纳,获得10
刚刚
gong完成签到,获得积分10
刚刚
bias完成签到,获得积分10
4秒前
6秒前
传奇3应助silencegreen5采纳,获得10
6秒前
8秒前
解语花应助zzzcxxx采纳,获得50
10秒前
acorn发布了新的文献求助10
11秒前
11秒前
777发布了新的文献求助10
12秒前
13秒前
vincy发布了新的文献求助50
13秒前
量子星尘发布了新的文献求助10
13秒前
Aten发布了新的文献求助10
13秒前
14秒前
刘刘发布了新的文献求助10
16秒前
orixero应助努力退休小博士采纳,获得10
16秒前
16秒前
19秒前
烟花应助acorn采纳,获得10
19秒前
123完成签到,获得积分10
20秒前
张雷完成签到,获得积分10
23秒前
可爱的函函应助是玥玥啊采纳,获得10
25秒前
26秒前
小乖完成签到 ,获得积分10
27秒前
顾矜应助铱金采纳,获得10
27秒前
28秒前
sara完成签到,获得积分10
30秒前
30秒前
酒酿是也发布了新的文献求助10
31秒前
liguri完成签到,获得积分10
31秒前
君君发布了新的文献求助30
31秒前
31秒前
王侯将相发布了新的文献求助10
33秒前
34秒前
寒冷鹏煊发布了新的文献求助10
34秒前
yang发布了新的文献求助10
35秒前
淀粉发布了新的文献求助10
36秒前
37秒前
fighting发布了新的文献求助10
38秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
Comparison of adverse drug reactions of heparin and its derivates in the European Economic Area based on data from EudraVigilance between 2017 and 2021 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3952472
求助须知:如何正确求助?哪些是违规求助? 3497823
关于积分的说明 11089109
捐赠科研通 3228398
什么是DOI,文献DOI怎么找? 1784850
邀请新用户注册赠送积分活动 868943
科研通“疑难数据库(出版商)”最低求助积分说明 801309