已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

A Deep Learning Approach to Predict Bleeding Risk Over Time in Patients on Extended Anticoagulation Therapy

医学 重症监护医学
作者
Soroush Shahryari Fard,Theodore J. Perkins,Philip S. Wells
出处
期刊:Journal of Thrombosis and Haemostasis [Elsevier BV]
卷期号:22 (7): 1997-2008 被引量:1
标识
DOI:10.1016/j.jtha.2024.04.005
摘要

Background Thus far, all the clinical models developed to predict major bleeding in patients on extended anticoagulation therapy use the baseline predictors to stratify patients into different risk groups. Therefore, these models do not account for the clinical changes and events that occur after the baseline visit, which can modify risk of bleeding. However, it is difficult to develop predictive models from the routine follow-up clinical interviews which are irregular sequences of multivariate time series data. Objectives To demonstrate that deep learning can incorporate patient time-series follow-up data to improve prediction of major bleeding. Method We used the baseline and follow-up data that was collected over 8 years in a longitudinal cohort study of 2542 patients, of whom 118 had major bleeding. Four supervised neural network-based machine learning models were trained on the baseline, or the follow-up, or both datasets on 70% of the data. The performance of these models was evaluated, along with modified versions of previously developed clinical models (CHAP, ACCP, RIETE, VTE-BLEED, HAS-BLED, and OBRI), on the remaining 30% of the data. Results An ensemble of feedforward and recurrent neural networks that used the baseline and follow-up data was the best-performing model, achieving a sensitivity and a specificity of 61% and 82%, respectively, in identifying major bleeding, and it outperformed the previously developed clinical models in terms of area under the ROC curve (82%) and area under the precision-recall curve (14%). Conclusion Time series follow-up data can improve major bleeding prediction in patients on extended anticoagulation therapy.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
青糯完成签到 ,获得积分10
1秒前
浮游应助qwer采纳,获得10
1秒前
大意的飞莲完成签到 ,获得积分10
3秒前
5秒前
贵哥完成签到,获得积分10
6秒前
韩雪霞发布了新的文献求助10
7秒前
Ww完成签到 ,获得积分10
9秒前
Johnason_ZC发布了新的文献求助10
9秒前
sfxnxgu发布了新的文献求助10
9秒前
10秒前
cds完成签到,获得积分20
12秒前
12秒前
NexusExplorer应助李小伟采纳,获得10
12秒前
Ye完成签到,获得积分20
13秒前
隐形曼青应助lune采纳,获得10
14秒前
15秒前
Maryamgvl发布了新的文献求助10
16秒前
16秒前
wenhao完成签到 ,获得积分10
17秒前
SIREN发布了新的文献求助10
17秒前
17秒前
FFF发布了新的文献求助10
17秒前
topsun完成签到,获得积分10
18秒前
wyf完成签到,获得积分20
18秒前
孙意冉发布了新的文献求助10
19秒前
耍酷安蕾完成签到 ,获得积分10
20秒前
24秒前
wang发布了新的文献求助10
25秒前
完美世界应助WZH采纳,获得30
26秒前
西吴完成签到 ,获得积分10
26秒前
Kristine完成签到 ,获得积分10
27秒前
李小伟发布了新的文献求助10
28秒前
冷酷晓夏完成签到,获得积分10
29秒前
小冯完成签到 ,获得积分10
30秒前
开放素完成签到 ,获得积分0
31秒前
深情安青应助独特的追命采纳,获得40
32秒前
1248846完成签到 ,获得积分10
33秒前
lele完成签到,获得积分10
36秒前
Owen应助Ye采纳,获得20
36秒前
adm0616完成签到,获得积分10
37秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Acute Mountain Sickness 2000
Handbook of Milkfat Fractionation Technology and Application, by Kerry E. Kaylegian and Robert C. Lindsay, AOCS Press, 1995 1000
A novel angiographic index for predicting the efficacy of drug-coated balloons in small vessels 500
Textbook of Neonatal Resuscitation ® 500
The Affinity Designer Manual - Version 2: A Step-by-Step Beginner's Guide 500
Affinity Designer Essentials: A Complete Guide to Vector Art: Your Ultimate Handbook for High-Quality Vector Graphics 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5063184
求助须知:如何正确求助?哪些是违规求助? 4286873
关于积分的说明 13358002
捐赠科研通 4104880
什么是DOI,文献DOI怎么找? 2247686
邀请新用户注册赠送积分活动 1253213
关于科研通互助平台的介绍 1184234