A Deep Learning Approach to Predict Bleeding Risk Over Time in Patients on Extended Anticoagulation Therapy

医学 重症监护医学
作者
Soroush Shahryari Fard,Theodore J. Perkins,Philip S. Wells
出处
期刊:Journal of Thrombosis and Haemostasis [Elsevier BV]
卷期号:22 (7): 1997-2008 被引量:1
标识
DOI:10.1016/j.jtha.2024.04.005
摘要

Background Thus far, all the clinical models developed to predict major bleeding in patients on extended anticoagulation therapy use the baseline predictors to stratify patients into different risk groups. Therefore, these models do not account for the clinical changes and events that occur after the baseline visit, which can modify risk of bleeding. However, it is difficult to develop predictive models from the routine follow-up clinical interviews which are irregular sequences of multivariate time series data. Objectives To demonstrate that deep learning can incorporate patient time-series follow-up data to improve prediction of major bleeding. Method We used the baseline and follow-up data that was collected over 8 years in a longitudinal cohort study of 2542 patients, of whom 118 had major bleeding. Four supervised neural network-based machine learning models were trained on the baseline, or the follow-up, or both datasets on 70% of the data. The performance of these models was evaluated, along with modified versions of previously developed clinical models (CHAP, ACCP, RIETE, VTE-BLEED, HAS-BLED, and OBRI), on the remaining 30% of the data. Results An ensemble of feedforward and recurrent neural networks that used the baseline and follow-up data was the best-performing model, achieving a sensitivity and a specificity of 61% and 82%, respectively, in identifying major bleeding, and it outperformed the previously developed clinical models in terms of area under the ROC curve (82%) and area under the precision-recall curve (14%). Conclusion Time series follow-up data can improve major bleeding prediction in patients on extended anticoagulation therapy.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
大可完成签到 ,获得积分10
刚刚
二三完成签到,获得积分10
刚刚
华仔应助爱笑的静洁采纳,获得10
1秒前
宋江他大表哥完成签到,获得积分10
3秒前
顺利的爆米花完成签到 ,获得积分10
3秒前
哈哈哈完成签到,获得积分10
4秒前
zxt完成签到 ,获得积分10
6秒前
捞鱼完成签到,获得积分10
8秒前
JOJO完成签到,获得积分10
9秒前
YYY完成签到,获得积分10
10秒前
云不暇完成签到 ,获得积分10
10秒前
合适靖儿完成签到 ,获得积分10
12秒前
迷路凌柏完成签到 ,获得积分10
14秒前
15秒前
wwl完成签到,获得积分10
16秒前
量子星尘发布了新的文献求助10
17秒前
玩命的十三完成签到 ,获得积分10
18秒前
ding应助爱笑的静洁采纳,获得10
21秒前
冷静完成签到,获得积分10
22秒前
欢呼的飞荷完成签到 ,获得积分10
24秒前
26秒前
感性的神级完成签到,获得积分10
26秒前
博士伦666完成签到 ,获得积分10
27秒前
务实时光发布了新的文献求助10
29秒前
感动的小鸽子完成签到,获得积分10
29秒前
糖糖糖唐完成签到,获得积分10
30秒前
七QI完成签到 ,获得积分10
30秒前
可露丽发布了新的文献求助10
31秒前
AVsecurity完成签到,获得积分10
31秒前
落后访风完成签到,获得积分10
33秒前
Robe完成签到,获得积分20
33秒前
Fengzhen007完成签到,获得积分10
34秒前
雪花落在丛林完成签到,获得积分10
34秒前
35秒前
von完成签到,获得积分10
37秒前
拼搏一曲完成签到 ,获得积分10
37秒前
汤翔完成签到,获得积分10
37秒前
38秒前
舒仲完成签到,获得积分10
40秒前
chen完成签到,获得积分10
41秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
A new approach to the extrapolation of accelerated life test data 1000
Coking simulation aids on-stream time 450
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 360
Novel Preparation of Chitin Nanocrystals by H2SO4 and H3PO4 Hydrolysis Followed by High-Pressure Water Jet Treatments 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4015708
求助须知:如何正确求助?哪些是违规求助? 3555661
关于积分的说明 11318291
捐赠科研通 3288879
什么是DOI,文献DOI怎么找? 1812301
邀请新用户注册赠送积分活动 887882
科研通“疑难数据库(出版商)”最低求助积分说明 812027