细胞凋亡
PI3K/AKT/mTOR通路
蛋白激酶B
化学
信号转导
MAPK/ERK通路
细胞生物学
一氧化氮合酶
药理学
生物
生物化学
酶
作者
Mengwei Li,Xiaojun Yu,Xin Chen,Yongqiao Jiang,Yunqian Zeng,Ranyue Ren,Mingbo Nie,Ziyang Zhang,Bao Yuan,Hao Kang
标识
DOI:10.1016/j.intimp.2024.112101
摘要
Intervertebral disc degeneration (IVDD) is a progressive degenerative disease influenced by various factors. Genkwanin, a known anti-inflammatory flavonoid, has not been explored for its potential in IVDD management. This study aims to investigate the effects and mechanisms of genkwanin on IVDD. In vitro, cell experiments revealed that genkwanin dose-dependently inhibited Interleukin-1β-induced expression levels of inflammatory factors (Interleukin-6, inducible nitric oxide synthase, cyclooxygenase-2) and degradation metabolic protein (matrix metalloproteinase-13). Concurrently, genkwanin upregulated the expression of synthetic metabolism genes (type II collagen, aggrecan). Moreover, genkwanin effectively reduced the phosphorylation of phosphatidylinositol 3-kinase (PI3K)/AKT/mammalian target of rapamycin, mitogen-activated protein kinase (MAPK), and nuclear factor-κB (NF-κB) pathways. Transcriptome sequencing analysis identified integrin α2 (ITGA2) as a potential target of genkwanin, and silencing ITGA2 reversed the activation of PI3K/AKT pathway induced by Interleukin-1β. Furthermore, genkwanin alleviated Interleukin-1β-induced senescence and apoptosis in nucleus pulposus cells. In vivo animal experiments demonstrated that genkwanin mitigated the progression of IVDD in the rat model through imaging and histological examinations. In conclusion, This study suggest that genkwanin inhibits inflammation in nucleus pulposus cells, promotes extracellular matrix remodeling, suppresses cellular senescence and apoptosis, through the ITGA2/PI3K/AKT, NF-κB and MAPK signaling pathways. These findings indicate that genkwanin may be a promising therapeutic candidate for IVDD.
科研通智能强力驱动
Strongly Powered by AbleSci AI