ITD-YOLOv8: An Infrared Target Detection Model Based on YOLOv8 for Unmanned Aerial Vehicles

遥感 红外线的 航空学 计算机科学 人工智能 计算机视觉 环境科学 工程类 地理 天文 物理
作者
Xiaofeng Zhao,Wenwen Zhang,Hui Zhang,Chao Zheng,Junyi Ma,Zhili Zhang
出处
期刊:Drones [MDPI AG]
卷期号:8 (4): 161-161 被引量:9
标识
DOI:10.3390/drones8040161
摘要

A UAV infrared target detection model ITD-YOLOv8 based on YOLOv8 is proposed to address the issues of model missed and false detections caused by complex ground background and uneven target scale in UAV aerial infrared image target detection, as well as high computational complexity. Firstly, an improved YOLOv8 backbone feature extraction network is designed based on the lightweight network GhostHGNetV2. It can effectively capture target feature information at different scales, improving target detection accuracy in complex environments while remaining lightweight. Secondly, the VoVGSCSP improves model perceptual abilities by referencing global contextual information and multiscale features to enhance neck structure. At the same time, a lightweight convolutional operation called AXConv is introduced to replace the regular convolutional module. Replacing traditional fixed-size convolution kernels with convolution kernels of different sizes effectively reduces the complexity of the model. Then, to further optimize the model and reduce missed and false detections during object detection, the CoordAtt attention mechanism is introduced in the neck of the model to weight the channel dimensions of the feature map, allowing the network to pay more attention to the important feature information, thereby improving the accuracy and robustness of object detection. Finally, the implementation of XIoU as a loss function for boundary boxes enhances the precision of target localization. The experimental findings demonstrate that ITD-YOLOv8, in comparison to YOLOv8n, effectively reduces the rate of missed and false detections for detecting multi-scale small targets in complex backgrounds. Additionally, it achieves a 41.9% reduction in model parameters and a 25.9% decrease in floating-point operations. Moreover, the mean accuracy (mAP) attains an impressive 93.5%, thereby confirming the model’s applicability for infrared target detection on unmanned aerial vehicles (UAVs).
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
轻松不言发布了新的文献求助10
2秒前
Din完成签到 ,获得积分10
2秒前
5秒前
港岛妹妹应助俏皮的冰绿采纳,获得10
6秒前
7秒前
山粉圆子完成签到 ,获得积分10
7秒前
8秒前
啦啦啦发布了新的文献求助10
9秒前
11秒前
不想说话发布了新的文献求助10
12秒前
12秒前
blueee1214完成签到,获得积分10
13秒前
aaaaa发布了新的文献求助10
13秒前
lll完成签到,获得积分10
13秒前
邓希静完成签到 ,获得积分10
14秒前
15秒前
66完成签到,获得积分10
18秒前
浣熊小呆完成签到,获得积分10
18秒前
研友_8Y2M0L发布了新的文献求助10
18秒前
魔幻的之云完成签到,获得积分20
19秒前
20秒前
21秒前
研友_ZragOn完成签到,获得积分10
22秒前
倾听完成签到,获得积分10
22秒前
wind200391杨发布了新的文献求助20
24秒前
24秒前
25秒前
不想说话完成签到,获得积分10
25秒前
GankhuyagJavzan完成签到,获得积分10
25秒前
研友_8Y2M0L完成签到,获得积分10
26秒前
倾听发布了新的文献求助10
26秒前
26秒前
不配.应助ROY采纳,获得20
26秒前
iii完成签到 ,获得积分10
26秒前
李爱国应助坐井说天阔采纳,获得10
27秒前
13841881385完成签到,获得积分10
27秒前
27秒前
Lii开心完成签到 ,获得积分10
28秒前
jioujg发布了新的文献求助10
28秒前
31秒前
高分求助中
The late Devonian Standard Conodont Zonation 2000
歯科矯正学 第7版(或第5版) 1004
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 1000
Semiconductor Process Reliability in Practice 1000
Smart but Scattered: The Revolutionary Executive Skills Approach to Helping Kids Reach Their Potential (第二版) 1000
Security Awareness: Applying Practical Cybersecurity in Your World 6th Edition 800
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 700
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3241564
求助须知:如何正确求助?哪些是违规求助? 2886037
关于积分的说明 8241488
捐赠科研通 2554561
什么是DOI,文献DOI怎么找? 1382645
科研通“疑难数据库(出版商)”最低求助积分说明 649613
邀请新用户注册赠送积分活动 625279