Unknown working condition fault diagnosis of rotate machine without training sample based on local fault semantic attribute

断层(地质) 过度拟合 嵌入 人工智能 对偶(语法数字) 计算机科学 机器学习 数据挖掘 模式识别(心理学) 地震学 地质学 人工神经网络 文学类 艺术
作者
Xuejun Liu,Wei Sun,Hongkun Li,Qiang Li,Zhenhui Ma,Chen Yang
出处
期刊:Advanced Engineering Informatics [Elsevier]
卷期号:61: 102515-102515 被引量:1
标识
DOI:10.1016/j.aei.2024.102515
摘要

Data-driven fault diagnosis techniques for rotating machinery have exhibited highly promising results. However, these methods heavily rely on sufficient faulty data and presuppose that the source (model training) and target domains (model diagnosis) share a matching data distribution. In practical industrial settings, acquiring target domain data can be quite challenging, and the distribution between the source and target domains is expected to differ due to various working condition of mechanical equipment. In order to surmount these challenges and address state monitoring under unknown working conditions, this paper presents a novel fault diagnosis method designed for rotating machinery in the absence of target domain data. Firstly, this method involves constructing local fault state semantic attributes using source samples from limited known working conditions of the rotating equipment. Secondly, a dual embedding module is employed to map the relation between fault features and fault state semantic attributes in a high-dimensional embedding space. Thirdly, an improved loss function is designed to optimize the dual embedding module by balancing inter-class and out-of-class distances of fault samples. Finally, to prevent overfitting result from limited known working conditions, samples of an additional third working condition are introduced during the training of the dual embedding module. Experimental evaluations conducted on two bearing datasets and an automobile transmission fault dataset from First Auto Work demonstrate the effectiveness of the proposed method in accurately identifying faults under unknown working condition. The fault diagnosis recognition accuracy under unknown working conditions exceeds 99.2%, 96.1% and 88.2%, and the proposed approach can effectively address the issue of diagnosing with no target domain data in engineering problems.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
糖果发布了新的文献求助10
刚刚
顺心夏青发布了新的文献求助30
2秒前
2秒前
dxr发布了新的文献求助10
2秒前
PGL关闭了PGL文献求助
3秒前
动听安筠完成签到 ,获得积分10
4秒前
Q。。发布了新的文献求助10
5秒前
6秒前
7秒前
7秒前
森林木发布了新的文献求助10
7秒前
学术小兔完成签到,获得积分10
8秒前
wheattt完成签到,获得积分10
8秒前
凡`完成签到,获得积分10
9秒前
laskxd完成签到,获得积分20
10秒前
10秒前
10秒前
wangchangwu完成签到,获得积分10
11秒前
程程程发布了新的文献求助10
13秒前
勤奋小张发布了新的文献求助10
13秒前
糖果完成签到,获得积分10
13秒前
拼搏惜金发布了新的文献求助30
14秒前
14秒前
小二郎应助顺心夏青采纳,获得30
15秒前
lwj完成签到,获得积分10
15秒前
claud完成签到 ,获得积分10
15秒前
CodeCraft应助皮皮鲁采纳,获得10
15秒前
16秒前
16秒前
大模型应助仲某某采纳,获得10
17秒前
laskxd关注了科研通微信公众号
18秒前
乔宝发布了新的文献求助10
19秒前
彭于晏应助nenoaowu采纳,获得10
20秒前
纯银Whisky关注了科研通微信公众号
21秒前
21秒前
拼搏惜金完成签到,获得积分10
22秒前
22秒前
gaoziwei发布了新的文献求助10
22秒前
香蕉觅云应助wangchangwu采纳,获得10
22秒前
雨寒完成签到,获得积分10
23秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2500
Востребованный временем 2500
Agaricales of New Zealand 1: Pluteaceae - Entolomataceae 1040
지식생태학: 생태학, 죽은 지식을 깨우다 600
海南省蛇咬伤流行病学特征与预后影响因素分析 500
Neuromuscular and Electrodiagnostic Medicine Board Review 500
ランス多機能化技術による溶鋼脱ガス処理の高効率化の研究 500
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3461234
求助须知:如何正确求助?哪些是违规求助? 3054927
关于积分的说明 9045666
捐赠科研通 2744832
什么是DOI,文献DOI怎么找? 1505707
科研通“疑难数据库(出版商)”最低求助积分说明 695794
邀请新用户注册赠送积分活动 695233