Harmonizing atmospheric ozone column concentrations over the Tibetan Plateau from 2005 to 2022 using OMI and Sentinel-5P TROPOMI: A deep learning approach

高原(数学) 臭氧 环境科学 地理 气候学 大气科学 自然地理学 气象学 地质学 数学 数学分析
作者
Changjiang Shi,Zhijie Zhang,Shengqing Xiong,Wangang Chen,Wanchang Zhang,Qian Zhang,Xingmao Wang
出处
期刊:International journal of applied earth observation and geoinformation 卷期号:129: 103808-103808
标识
DOI:10.1016/j.jag.2024.103808
摘要

Atmospheric ozone plays a pivotal role in Earth's climate system, influencing solar radiation absorption in the stratosphere and regulating ultraviolet light reaching the surface. Accurate monitoring of ozone concentration is crucial for environmental assessments, air quality monitoring, and climate change studies. The Ozone Monitoring Instrument (OMI) and Sentinel-5 Precursor TROPOspheric Monitoring Instrument (TROPOMI) provide valuable data for such monitoring. While OMI offers a long data record since 2004, but its effectiveness is hindered by its limitations in spatial resolution and signal-to-noise ratio, stemming from satellite hardware and retrieval algorithms. Sentinel-5P TROPOMI provides higher spatial resolution and improved signal-to-noise ratio, nevertheless, data record from it is rather short. Harmonizing these two datasets by taking the best use of their specific advantages is essential for creating a comprehensive and accurate atmospheric ozone concentration dataset. To maximize the advantages of these multi-source data products, our method utilizes a neural network to learn the mapping relationship between OMI and Sentinel-5P TROPOMI ozone column concentration products, constructing a harmonized model that optimizes the spatial and temporal sequence of historical OMI ozone column concentrations while considering topographic factors. The reconstructed ozone column concentration product is a long time series with the high spatial resolution and accuracy characteristics of Sentinel-5P TROPOMI. This research leverages powerful nonlinear modeling and spatial feature mapping capabilities based on deep learning networks to create a harmonized dataset of atmospheric ozone column concentrations, offering a comprehensive understanding of ozone distribution across the Tibetan Plateau. This dataset not only improves accuracy and precision in ozone concentration measurements but also facilitates in-depth analysis of local ozone variations, providing reliable dataset for scientific investigations into the atmospheric environment. The complete dataset is openly accessible at https://doi.org/10.5281/zenodo.10430751.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
hn完成签到,获得积分10
2秒前
Lucas应助大呲花采纳,获得10
3秒前
4秒前
孙孙孙啊完成签到,获得积分10
6秒前
xiaohu完成签到,获得积分20
6秒前
不配.应助zzxpp采纳,获得10
7秒前
Wangyingjie5完成签到 ,获得积分10
8秒前
9秒前
飞翔的霸天哥应助Kevin采纳,获得30
10秒前
10秒前
in应助keke采纳,获得20
12秒前
12秒前
12秒前
wang5945发布了新的文献求助10
12秒前
曾梦发布了新的文献求助10
14秒前
爆米花应助巫马小霜采纳,获得10
14秒前
WHY发布了新的文献求助10
15秒前
大呲花发布了新的文献求助10
17秒前
18秒前
23秒前
Xiaopu发布了新的文献求助10
24秒前
25秒前
白日幻想家完成签到 ,获得积分10
26秒前
传奇3应助WHY采纳,获得10
27秒前
ddak发布了新的文献求助10
27秒前
30秒前
31秒前
巫马小霜发布了新的文献求助10
31秒前
32秒前
科研通AI2S应助科研小白采纳,获得10
34秒前
科研通AI2S应助科研小白采纳,获得10
34秒前
轻松冰旋应助科研小白采纳,获得10
34秒前
Jasper应助科研小白采纳,获得30
34秒前
搜集达人应助YDSL采纳,获得10
35秒前
37秒前
1111111发布了新的文献求助10
37秒前
吃不饱星球球长完成签到,获得积分0
38秒前
41秒前
ggkx完成签到,获得积分10
44秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Le dégorgement réflexe des Acridiens 800
Defense against predation 800
Very-high-order BVD Schemes Using β-variable THINC Method 568
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3136281
求助须知:如何正确求助?哪些是违规求助? 2787312
关于积分的说明 7780828
捐赠科研通 2443293
什么是DOI,文献DOI怎么找? 1299081
科研通“疑难数据库(出版商)”最低求助积分说明 625325
版权声明 600905