Precision-mapping Functional Connectivity in Parkinson Disease: Feasibility & Reliability (P7-3.005)

可靠性(半导体) 功能连接 神经科学 疾病 医学 计算机科学 物理医学与康复 心理学 内科学 物理 量子力学 功率(物理)
作者
Meghan C. Campbell,Sarah C. Grossen,Emma Carr,Abdulmunaim M. Eid,Scott A. Norris,Jake Chernicky,Ally Dworetsky,Caterina Gratton
出处
期刊:Neurology [Ovid Technologies (Wolters Kluwer)]
卷期号:102 (17_supplement_1) 被引量:1
标识
DOI:10.1212/wnl.0000000000206385
摘要

To determine the feasibility and reliability of using precision-mapping techniques for people with Parkinson disease. Standard resting-state functional connectivity (RSFC) approaches collect small amounts of data, typically ≤ 10 min, and rely on group-average network definitions. An innovative new approach applies precision-mapping techniques, with > 40min of data, to identify individual-level RSFC network maps. Precision-mapping RSFC reveals individual differences in network size, strength, and location. We tested the feasibility and reliability of precision-mapping RSFC for people with Parkinson disease. Participants completed multiple fMRI sessions (3-5) up to seven months apart. Using stringent motion censoring, we determined the amount of low-motion, high quality fMRI data per person to establish feasibility. We compared the similarity of RSFC maps across sessions to examine stability and applied split-half analyses to measure the reliability of RSFC maps based on amount fMRI data. Preliminary analyses reveal the high feasibility and strong reliability of precision-mapping RSFC for people with Parkinson disease. All participants completed multiple fMRI sessions with large amounts of low motion data for each person (>40 min per person, frame retention average = 75%). Individual participant RSFC maps were stable across sessions (r > 0.7) and highly reliable with >40min of data (split-half reliability, r > 0.8). These results demonstrate the feasibility and reliability of using the precision-mapping technique for identifying individual-level RSFC networks in Parkinson disease. With this approach, it will now be possible to examine how individual-level variability of RSFC networks relates to variability in clinical manifestations and predicts progression of Parkinson disease. Disclosure: The institution of Meghan C. Campbell has received research support from NIH. The institution of Meghan C. Campbell has received research support from NIH. The institution of Meghan C. Campbell has received research support from McDonnell Center for Systems Neuroscience. The institution of Meghan C. Campbell has received research support from WUSM Radiology Department. The institution of Meghan C. Campbell has received research support from NIH. Meghan C. Campbell has received personal compensation in the range of $0-$499 for serving as a Grant Reviewer with Parkinson Foundation. Meghan C. Campbell has received personal compensation in the range of $500-$4,999 for serving as a Grant Reviewer with Department of Defense. Ms. Grossen has nothing to disclose. Ms. Carr has nothing to disclose. Dr. Eid has nothing to disclose. The institution of Dr. Norris has received research support from NIH, DMRF, Dysphonia International. Ms. Dworetsky has nothing to disclose. Prof. Gratton has nothing to disclose.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
搜集达人应助JJ索采纳,获得10
1秒前
小小完成签到,获得积分20
1秒前
1秒前
阔达笙完成签到,获得积分10
1秒前
通研科发布了新的文献求助10
1秒前
大个应助qingqing采纳,获得10
1秒前
超好运发布了新的文献求助10
1秒前
冷酷绝山发布了新的文献求助10
2秒前
2秒前
2秒前
2秒前
4秒前
搜集达人应助冯冯采纳,获得10
4秒前
gq0401发布了新的文献求助10
5秒前
6秒前
铃兰发布了新的文献求助10
7秒前
佳妮发布了新的文献求助10
7秒前
Echo完成签到,获得积分0
7秒前
8秒前
现代秦始皇完成签到 ,获得积分10
8秒前
野原发布了新的文献求助10
9秒前
9秒前
10秒前
赘婿应助科研通管家采纳,获得10
10秒前
FashionBoy应助科研通管家采纳,获得10
10秒前
无花果应助科研通管家采纳,获得10
10秒前
SciGPT应助科研通管家采纳,获得10
10秒前
研友_VZG7GZ应助科研通管家采纳,获得10
11秒前
Lucas应助科研通管家采纳,获得10
11秒前
大模型应助科研通管家采纳,获得10
11秒前
11秒前
11秒前
Hello应助科研通管家采纳,获得10
11秒前
11秒前
devil完成签到,获得积分10
11秒前
顺利秋灵完成签到,获得积分20
12秒前
科研通AI5应助9℃采纳,获得10
14秒前
科研通AI5应助南边的海采纳,获得200
15秒前
CHENJIRU发布了新的文献求助10
15秒前
15秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Structural Load Modelling and Combination for Performance and Safety Evaluation 1000
Conference Record, IAS Annual Meeting 1977 820
England and the Discovery of America, 1481-1620 600
電気学会論文誌D(産業応用部門誌), 141 巻, 11 号 510
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3574410
求助须知:如何正确求助?哪些是违规求助? 3144137
关于积分的说明 9455497
捐赠科研通 2845648
什么是DOI,文献DOI怎么找? 1564515
邀请新用户注册赠送积分活动 732319
科研通“疑难数据库(出版商)”最低求助积分说明 719015