A Novel Insertion Solution for the Travelling Salesman Problem

旅行商问题 计算机科学 数学优化 数学
作者
Emmanuel Oluwatobi Asani,Aderemi E. Okeyinka,Sunday Adeola Ajagbe,Ayodele A. Adebiyi,Roseline Oluwaseun Ogundokun,Temitope Samson Adekunle,Pragasen Mudali,Matthew O. Adigun
出处
期刊:Computers, materials & continua 卷期号:79 (1): 1581-1597 被引量:1
标识
DOI:10.32604/cmc.2024.047898
摘要

The study presents the Half Max Insertion Heuristic (HMIH) as a novel approach to solving the Travelling Salesman Problem (TSP).The goal is to outperform existing techniques such as the Farthest Insertion Heuristic (FIH) and Nearest Neighbour Heuristic (NNH).The paper discusses the limitations of current construction tour heuristics, focusing particularly on the significant margin of error in FIH.It then proposes HMIH as an alternative that minimizes the increase in tour distance and includes more nodes.HMIH improves tour quality by starting with an initial tour consisting of a 'minimum' polygon and iteratively adding nodes using our novel Half Max routine.The paper thoroughly examines and compares HMIH with FIH and NNH via rigorous testing on standard TSP benchmarks.The results indicate that HMIH consistently delivers superior performance, particularly with respect to tour cost and computational efficiency.HMIH's tours were sometimes 16% shorter than those generated by FIH and NNH, showcasing its potential and value as a novel benchmark for TSP solutions.The study used statistical methods, including Friedman's Non-parametric Test, to validate the performance of HMIH over FIH and NNH.This guarantees that the identified advantages are statistically significant and consistent in various situations.This comprehensive analysis emphasizes the reliability and efficiency of the heuristic, making a compelling case for its use in solving TSP issues.The research shows that, in general, HMIH fared better than FIH in all cases studied, except for a few instances (pr439, eil51, and eil101) where FIH either performed equally or slightly better than HMIH.HMIH's efficiency is shown by its improvements in error percentage (δ) and goodness values (g) compared to FIH and NNH.In the att48 instance, HMIH had an error rate of 6.3%, whereas FIH had 14.6% and NNH had 20.9%, indicating that HMIH was closer to the optimal solution.HMIH consistently showed superior performance across many benchmarks, with lower percentage error and higher goodness values, suggesting a closer match to the optimal tour costs.This study substantially contributes to combinatorial optimization by enhancing current insertion algorithms and presenting a more efficient solution for the Travelling Salesman Problem.It also creates new possibilities for progress in heuristic design and optimization methodologies.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
爆米花应助沉静晓丝采纳,获得10
刚刚
田様应助黄燕采纳,获得10
刚刚
1秒前
susu完成签到,获得积分10
1秒前
dyuguo3完成签到 ,获得积分10
2秒前
2秒前
SYLH应助紫宸采纳,获得10
3秒前
4秒前
4秒前
子云发布了新的文献求助10
5秒前
5秒前
wwx发布了新的文献求助10
5秒前
6秒前
7秒前
8秒前
小乔发布了新的文献求助10
9秒前
ljx完成签到 ,获得积分10
9秒前
11秒前
星汉发布了新的文献求助10
12秒前
风起人散完成签到,获得积分10
13秒前
ljkshr发布了新的文献求助10
13秒前
fxtx1234完成签到,获得积分10
14秒前
hushow完成签到,获得积分20
16秒前
苏东方完成签到,获得积分10
16秒前
16秒前
CodeCraft应助Everglow采纳,获得10
17秒前
李爱国应助慕容夜梅采纳,获得10
17秒前
ezekiet完成签到 ,获得积分10
18秒前
沉静晓丝发布了新的文献求助10
18秒前
坚定的海露完成签到,获得积分10
18秒前
19秒前
fxtx1234发布了新的文献求助10
19秒前
斯人完成签到 ,获得积分10
19秒前
空的境界完成签到 ,获得积分10
20秒前
hushow发布了新的文献求助10
22秒前
TTTaT完成签到,获得积分10
22秒前
24秒前
善学以致用应助Jey采纳,获得10
24秒前
spenley发布了新的文献求助10
25秒前
华仔应助wwx采纳,获得10
25秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
The First Nuclear Era: The Life and Times of a Technological Fixer 500
Unusual formation of 4-diazo-3-nitriminopyrazoles upon acid nitration of pyrazolo[3,4-d][1,2,3]triazoles 500
岡本唐貴自伝的回想画集 500
Distinct Aggregation Behaviors and Rheological Responses of Two Terminally Functionalized Polyisoprenes with Different Quadruple Hydrogen Bonding Motifs 450
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3671764
求助须知:如何正确求助?哪些是违规求助? 3228378
关于积分的说明 9780106
捐赠科研通 2938766
什么是DOI,文献DOI怎么找? 1610218
邀请新用户注册赠送积分活动 760611
科研通“疑难数据库(出版商)”最低求助积分说明 736096