Unsupervised Bidirectional Contrastive Reconstruction and Adaptive Fine-Grained Channel Attention Networks for image dehazing

计算机科学 编码(集合论) 水准点(测量) 人工智能 特征(语言学) 模式识别(心理学) 源代码 频道(广播) 图像(数学) 无监督学习 失真(音乐) 发电机(电路理论) 适应(眼睛) 功率(物理) 放大器 程序设计语言 地理 带宽(计算) 哲学 集合(抽象数据类型) 物理 光学 操作系统 量子力学 语言学 计算机网络 大地测量学
作者
Hang Sun,Yang Wen,Huijing Feng,Yuelin Zheng,Qi Mei,Dong Ren,Mei Yu
出处
期刊:Neural Networks [Elsevier BV]
卷期号:176: 106314-106314 被引量:11
标识
DOI:10.1016/j.neunet.2024.106314
摘要

Recently, Unsupervised algorithms has achieved remarkable performance in image dehazing. However, the CycleGAN framework can lead to confusion in generator learning due to inconsistent data distributions, and the DisentGAN framework lacks effective constraints on generated images, resulting in the loss of image content details and color distortion. Moreover, Squeeze and Excitation channel attention employs only fully connected layers to capture global information, lacking interaction with local information, resulting in inaccurate feature weight allocation for image dehazing. To solve the above problems, in this paper, we propose an Unsupervised Bidirectional Contrastive Reconstruction and Adaptive Fine-Grained Channel Attention Networks (UBRFC-Net). Specifically, an Unsupervised Bidirectional Contrastive Reconstruction Framework (BCRF) is proposed, aiming to establish bidirectional contrastive reconstruction constraints, not only to avoid the generator learning confusion in CycleGAN but also to enhance the constraint capability for clear images and the reconstruction ability of the unsupervised dehazing network. Furthermore, an Adaptive Fine-Grained Channel Attention (FCA) is developed to utilize the correlation matrix to capture the correlation between global and local information at various granularities promotes interaction between them, achieving more efficient feature weight assignment. Experimental results on challenging benchmark datasets demonstrate the superiority of our UBRFC-Net over state-of-the-art unsupervised image dehazing methods. This study successfully introduces an enhanced unsupervised image dehazing approach, addressing limitations of existing methods and achieving superior dehazing results. The source code is available at https://github.com/Lose-Code/UBRFC-Net
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
今后应助Beginner采纳,获得10
1秒前
1秒前
嗯嗯发布了新的文献求助10
1秒前
华天九四发布了新的文献求助10
2秒前
材1发布了新的文献求助20
2秒前
褚忆灵发布了新的文献求助10
2秒前
2秒前
3秒前
贲半梦发布了新的文献求助10
3秒前
3秒前
舒服的井完成签到,获得积分10
4秒前
晚灯完成签到,获得积分10
4秒前
量子星尘发布了新的文献求助10
5秒前
6秒前
漂流的云朵完成签到,获得积分10
6秒前
霍骁发布了新的文献求助10
6秒前
顺利发布了新的文献求助10
6秒前
W~舞发布了新的文献求助10
6秒前
yui应助852采纳,获得10
7秒前
7秒前
zzz关注了科研通微信公众号
7秒前
water应助科研通管家采纳,获得10
7秒前
Owen应助科研通管家采纳,获得10
8秒前
所所应助科研通管家采纳,获得30
8秒前
8秒前
鸣笛应助科研通管家采纳,获得50
8秒前
8秒前
8秒前
8秒前
8秒前
8秒前
8秒前
8秒前
8秒前
8秒前
牧海冬发布了新的文献求助10
9秒前
9秒前
10秒前
10秒前
xzf1996发布了新的文献求助10
10秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
Comparison of adverse drug reactions of heparin and its derivates in the European Economic Area based on data from EudraVigilance between 2017 and 2021 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3952072
求助须知:如何正确求助?哪些是违规求助? 3497487
关于积分的说明 11087843
捐赠科研通 3228126
什么是DOI,文献DOI怎么找? 1784700
邀请新用户注册赠送积分活动 868855
科研通“疑难数据库(出版商)”最低求助积分说明 801203