Image Compressed Sensing: From Deep Learning to Adaptive Learning

深度学习 人工智能 计算机科学 计算机视觉
作者
Zhonghua Xie,Lingjun Liu,Zehong Chen
出处
期刊:Knowledge Based Systems [Elsevier]
卷期号:293: 111659-111659 被引量:6
标识
DOI:10.1016/j.knosys.2024.111659
摘要

Deep neural networks have revolutionized the field of image compressed sensing (CS) by delivering unprecedented performance gains. Despite significant achievements, future development and practical applications are hindered by the inflexibility and inadaptability of deep neural networks, including non-content-aware sampling, non-context-aware feature representation, and the weak generalization of network models to different sampling modes. To resolve these issues, many emerging techniques have been proposed. The first trend is adaptive sensing, which enables the sampling matrix to be trained and even realize adaptive rate allocation. The second is adaptive feature learning, which leverages the relationships between the image features, blocks, and network stages. The third is to achieve model-adaption using a series of scalable schemes. This review summarizes these techniques as adaptive learning for image CS and presents the development process. We first review the inverse imaging problem, traditional sparse models and optimization algorithms encountered in CS research, and then introduce the basic frameworks of image CS using deep learning. The development of deep learning-based image CS is divided into three directions and presented separately. Reviewing previous studies, we discuss the current limitations and suggest possible future research directions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
失眠纹关注了科研通微信公众号
1秒前
1秒前
自信的毛豆完成签到,获得积分10
1秒前
大模型应助六六采纳,获得10
2秒前
ningpang完成签到,获得积分20
2秒前
可靠代丝发布了新的文献求助10
2秒前
啊建发布了新的文献求助10
3秒前
yuanvv完成签到,获得积分10
3秒前
科研小白完成签到,获得积分10
3秒前
风再起时完成签到,获得积分10
3秒前
小郑顺利毕业完成签到,获得积分10
4秒前
4秒前
4秒前
CipherSage应助zhang采纳,获得10
4秒前
muye发布了新的文献求助100
5秒前
5秒前
menmengwei完成签到,获得积分10
5秒前
阿斯顿发广告完成签到,获得积分10
6秒前
小马哥发布了新的文献求助20
6秒前
youth发布了新的文献求助10
6秒前
1a完成签到,获得积分10
7秒前
Dalia完成签到,获得积分10
7秒前
浮游应助阿斯顿发广告采纳,获得10
8秒前
8秒前
OuO完成签到,获得积分10
8秒前
Hello应助ww采纳,获得10
8秒前
8秒前
NHN发布了新的文献求助10
8秒前
xff关闭了xff文献求助
8秒前
9秒前
9秒前
爆米花应助wyz采纳,获得20
9秒前
9秒前
简单完成签到,获得积分20
10秒前
浮游应助小汪努力搞科研采纳,获得10
10秒前
10秒前
任性天晴发布了新的文献求助20
10秒前
长尾巴的人类完成签到,获得积分10
11秒前
11秒前
开朗芸遥完成签到,获得积分10
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Iron toxicity and hematopoietic cell transplantation: do we understand why iron affects transplant outcome? 1500
List of 1,091 Public Pension Profiles by Region 1001
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 500
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
On the application of advanced modeling tools to the SLB analysis in NuScale. Part I: TRACE/PARCS, TRACE/PANTHER and ATHLET/DYN3D 500
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5473258
求助须知:如何正确求助?哪些是违规求助? 4575461
关于积分的说明 14352959
捐赠科研通 4503014
什么是DOI,文献DOI怎么找? 2467404
邀请新用户注册赠送积分活动 1455315
关于科研通互助平台的介绍 1429322