Image Compressed Sensing: From Deep Learning to Adaptive Learning

深度学习 人工智能 计算机科学 计算机视觉
作者
Zhonghua Xie,Lingjun Liu,Zehong Chen
出处
期刊:Knowledge Based Systems [Elsevier]
卷期号:293: 111659-111659 被引量:6
标识
DOI:10.1016/j.knosys.2024.111659
摘要

Deep neural networks have revolutionized the field of image compressed sensing (CS) by delivering unprecedented performance gains. Despite significant achievements, future development and practical applications are hindered by the inflexibility and inadaptability of deep neural networks, including non-content-aware sampling, non-context-aware feature representation, and the weak generalization of network models to different sampling modes. To resolve these issues, many emerging techniques have been proposed. The first trend is adaptive sensing, which enables the sampling matrix to be trained and even realize adaptive rate allocation. The second is adaptive feature learning, which leverages the relationships between the image features, blocks, and network stages. The third is to achieve model-adaption using a series of scalable schemes. This review summarizes these techniques as adaptive learning for image CS and presents the development process. We first review the inverse imaging problem, traditional sparse models and optimization algorithms encountered in CS research, and then introduce the basic frameworks of image CS using deep learning. The development of deep learning-based image CS is divided into three directions and presented separately. Reviewing previous studies, we discuss the current limitations and suggest possible future research directions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
sxj发布了新的文献求助10
刚刚
orixero应助项南风采纳,获得10
1秒前
传奇3应助ym采纳,获得10
3秒前
求助人员发布了新的文献求助10
3秒前
3秒前
4秒前
小怪兽完成签到 ,获得积分10
4秒前
量子星尘发布了新的文献求助10
5秒前
5秒前
所所应助科研通管家采纳,获得10
5秒前
Ava应助科研通管家采纳,获得10
5秒前
5秒前
ding应助科研通管家采纳,获得30
5秒前
Owen应助科研通管家采纳,获得10
5秒前
5秒前
NexusExplorer应助科研通管家采纳,获得10
5秒前
在水一方应助科研通管家采纳,获得10
5秒前
Ava应助科研通管家采纳,获得10
5秒前
5秒前
小蘑菇应助科研通管家采纳,获得10
5秒前
香蕉觅云应助科研通管家采纳,获得10
5秒前
5秒前
桐桐应助科研通管家采纳,获得10
5秒前
Whim应助科研通管家采纳,获得50
6秒前
完美世界应助科研通管家采纳,获得10
6秒前
李健应助科研通管家采纳,获得10
6秒前
6秒前
完美世界应助科研通管家采纳,获得10
6秒前
Orange应助科研通管家采纳,获得10
6秒前
汉堡包应助科研通管家采纳,获得30
6秒前
今后应助科研通管家采纳,获得10
6秒前
6秒前
领导范儿应助科研通管家采纳,获得10
6秒前
汉堡包应助科研通管家采纳,获得10
6秒前
香蕉觅云应助科研通管家采纳,获得10
6秒前
6秒前
6秒前
小二郎应助科研通管家采纳,获得30
6秒前
6秒前
6秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5720240
求助须知:如何正确求助?哪些是违规求助? 5259215
关于积分的说明 15290544
捐赠科研通 4869684
什么是DOI,文献DOI怎么找? 2614942
邀请新用户注册赠送积分活动 1564958
关于科研通互助平台的介绍 1522093