Image Compressed Sensing: From Deep Learning to Adaptive Learning

深度学习 人工智能 计算机科学 计算机视觉
作者
Zhonghua Xie,Lingjun Liu,Zehong Chen
出处
期刊:Knowledge Based Systems [Elsevier BV]
卷期号:293: 111659-111659 被引量:4
标识
DOI:10.1016/j.knosys.2024.111659
摘要

Deep neural networks have revolutionized the field of image compressed sensing (CS) by delivering unprecedented performance gains. Despite significant achievements, future development and practical applications are hindered by the inflexibility and inadaptability of deep neural networks, including non-content-aware sampling, non-context-aware feature representation, and the weak generalization of network models to different sampling modes. To resolve these issues, many emerging techniques have been proposed. The first trend is adaptive sensing, which enables the sampling matrix to be trained and even realize adaptive rate allocation. The second is adaptive feature learning, which leverages the relationships between the image features, blocks, and network stages. The third is to achieve model-adaption using a series of scalable schemes. This review summarizes these techniques as adaptive learning for image CS and presents the development process. We first review the inverse imaging problem, traditional sparse models and optimization algorithms encountered in CS research, and then introduce the basic frameworks of image CS using deep learning. The development of deep learning-based image CS is divided into three directions and presented separately. Reviewing previous studies, we discuss the current limitations and suggest possible future research directions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
df完成签到 ,获得积分10
1秒前
卡酷发布了新的文献求助10
1秒前
3秒前
果实发布了新的文献求助10
3秒前
6秒前
7秒前
熊i发布了新的文献求助10
8秒前
8秒前
8秒前
9秒前
10秒前
请假了发布了新的文献求助10
12秒前
lalala发布了新的文献求助10
12秒前
传奇3应助天真忆文采纳,获得10
13秒前
13秒前
乖加油发布了新的文献求助10
14秒前
夏之发布了新的文献求助50
15秒前
17秒前
量子星尘发布了新的文献求助10
18秒前
lili完成签到 ,获得积分10
20秒前
萤火虫啦啦完成签到,获得积分20
21秒前
华仔应助Singularity采纳,获得10
21秒前
baibaibai完成签到,获得积分10
21秒前
脑洞疼应助耍酷玉米采纳,获得10
22秒前
于鑫发布了新的文献求助10
23秒前
23秒前
23秒前
科目三应助乖加油采纳,获得10
25秒前
思源应助Parsifal采纳,获得10
25秒前
马麻薯完成签到,获得积分10
25秒前
26秒前
27秒前
果实发布了新的文献求助10
28秒前
博修发布了新的文献求助30
28秒前
耍酷玉米完成签到,获得积分10
29秒前
早日毕业佳完成签到,获得积分10
29秒前
雪落你看不见完成签到,获得积分10
29秒前
我是老大应助wuliww采纳,获得10
30秒前
31秒前
31秒前
高分求助中
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
Christian Women in Chinese Society: The Anglican Story 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3960985
求助须知:如何正确求助?哪些是违规求助? 3507215
关于积分的说明 11134512
捐赠科研通 3239640
什么是DOI,文献DOI怎么找? 1790273
邀请新用户注册赠送积分活动 872328
科研通“疑难数据库(出版商)”最低求助积分说明 803149