Image Compressed Sensing: From Deep Learning to Adaptive Learning

深度学习 人工智能 计算机科学 计算机视觉
作者
Zhonghua Xie,Lingjun Liu,Zehong Chen
出处
期刊:Knowledge Based Systems [Elsevier]
卷期号:293: 111659-111659 被引量:1
标识
DOI:10.1016/j.knosys.2024.111659
摘要

Deep neural networks have revolutionized the field of image compressed sensing (CS) by delivering unprecedented performance gains. Despite significant achievements, future development and practical applications are hindered by the inflexibility and inadaptability of deep neural networks, including non-content-aware sampling, non-context-aware feature representation, and the weak generalization of network models to different sampling modes. To resolve these issues, many emerging techniques have been proposed. The first trend is adaptive sensing, which enables the sampling matrix to be trained and even realize adaptive rate allocation. The second is adaptive feature learning, which leverages the relationships between the image features, blocks, and network stages. The third is to achieve model-adaption using a series of scalable schemes. This review summarizes these techniques as adaptive learning for image CS and presents the development process. We first review the inverse imaging problem, traditional sparse models and optimization algorithms encountered in CS research, and then introduce the basic frameworks of image CS using deep learning. The development of deep learning-based image CS is divided into three directions and presented separately. Reviewing previous studies, we discuss the current limitations and suggest possible future research directions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
林林发布了新的文献求助10
1秒前
等待之柔发布了新的文献求助10
1秒前
4秒前
酷波er应助贪玩绮南采纳,获得10
6秒前
善良寒风完成签到,获得积分10
7秒前
8秒前
11秒前
12秒前
14秒前
14秒前
来自3602完成签到,获得积分10
14秒前
研友_VZG7GZ应助干雅柏采纳,获得10
14秒前
16秒前
qupei完成签到 ,获得积分10
16秒前
17秒前
无奈曼云发布了新的文献求助10
17秒前
Spark发布了新的文献求助10
18秒前
贪玩绮南发布了新的文献求助10
18秒前
Silence_Sail发布了新的文献求助20
19秒前
刘刘pf发布了新的文献求助10
21秒前
22秒前
典雅不凡发布了新的文献求助10
23秒前
23秒前
23秒前
星辰大海应助科研通管家采纳,获得10
23秒前
彭于晏应助科研通管家采纳,获得10
23秒前
24秒前
Swuliu发布了新的文献求助10
26秒前
28秒前
麦子完成签到,获得积分10
28秒前
JamesPei应助刘刘pf采纳,获得10
29秒前
干雅柏发布了新的文献求助10
30秒前
32秒前
34秒前
34秒前
李健的小迷弟应助小只采纳,获得10
37秒前
落卿然完成签到,获得积分10
37秒前
执着烧鹅完成签到 ,获得积分10
38秒前
kkdkg发布了新的文献求助10
40秒前
42秒前
高分求助中
Evolution 10000
ISSN 2159-8274 EISSN 2159-8290 1000
Becoming: An Introduction to Jung's Concept of Individuation 600
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3161007
求助须知:如何正确求助?哪些是违规求助? 2812311
关于积分的说明 7895133
捐赠科研通 2471181
什么是DOI,文献DOI怎么找? 1315908
科研通“疑难数据库(出版商)”最低求助积分说明 631071
版权声明 602086