A mixed uncertain structural reliability analysis method considering random and convex set variables with correlation

可靠性(半导体) 随机变量 数学 集合(抽象数据类型) 相关性 统计 计算机科学 功率(物理) 物理 几何学 量子力学 程序设计语言
作者
Hang Ma,Junxi Bi,Haibin Li,Xinyu Ge,Dachuan Zhou,Jiaming Jiao,Sheng Wang
出处
期刊:Quality and Reliability Engineering International [Wiley]
卷期号:40 (5): 2730-2753
标识
DOI:10.1002/qre.3546
摘要

Abstract In this paper, a mixed model reliability analysis method is put forward for the problem of assessing the reliability of complex engineering structures containing both random and convex aggregate variables. By integrating the ellipsoidal model with correlation and the interval model, the uncertainty region characterized by the ellipsoidal model with correlation is optimized with full consideration of the limited amount of engineering structure sample data, and the risk region represented by the reliability model is redefined, a new mixed reliability assessment criterion is established, and the minimum safe nonprobability reliability index of the structure is built. A key reference is offered by the safety limit diagram of constant reliability indexes set for the first time for the optimal design of engineering structure reliability. The proposed mixed reliability model is compared and analyzed with three classical models. The sensitivity of nonprobability reliability indexes, influenced by random variable parameters and correlation coefficients, is analyzed. This verification confirms that the new reliability model not only provides an accurate assessment of engineering structures' reliability but also lowers the computational demands of engineering design. In this paper, aero‐engine blades and wind turbine blades are taken as examples to expound the validity of the reliability model built using this method and its importance to the structural safety analysis of actual engineering.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
白白完成签到,获得积分10
刚刚
刚刚
刚刚
苏苏完成签到,获得积分10
1秒前
1秒前
wu完成签到,获得积分10
1秒前
1秒前
2秒前
MADKAI发布了新的文献求助10
2秒前
2秒前
李健的小迷弟应助111采纳,获得10
3秒前
Accept应助wintercyan采纳,获得20
3秒前
哲999完成签到,获得积分10
3秒前
Mian完成签到,获得积分10
3秒前
4秒前
4秒前
于嗣濠完成签到 ,获得积分10
4秒前
36456657应助CC采纳,获得10
4秒前
优雅山柏发布了新的文献求助10
5秒前
Jacky完成签到,获得积分10
5秒前
脑洞疼应助无情的白桃采纳,获得10
5秒前
mm发布了新的文献求助10
5秒前
6秒前
6秒前
zoko发布了新的文献求助10
6秒前
6秒前
曾经的臻发布了新的文献求助10
6秒前
华仔应助S1mple_gentleman采纳,获得10
6秒前
科研通AI5应助CC采纳,获得10
6秒前
6秒前
7秒前
7秒前
张静静完成签到,获得积分10
8秒前
8秒前
震666发布了新的文献求助30
8秒前
MADKAI发布了新的文献求助10
8秒前
8秒前
117发布了新的文献求助10
8秒前
9秒前
9秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527521
求助须知:如何正确求助?哪些是违规求助? 3107606
关于积分的说明 9286171
捐赠科研通 2805329
什么是DOI,文献DOI怎么找? 1539901
邀请新用户注册赠送积分活动 716827
科研通“疑难数据库(出版商)”最低求助积分说明 709740